Bidirectional Puc Converter Based Battery Storage System for Active and Reactive Power Control

Authors

DOI:

https://doi.org/10.58190/ijamec.2025.146

Keywords:

Battery storage system, packed U-cell converter, , grid-tied mode, stand-alone mode , capacitor voltage control, power control

Abstract

Battery storage systems (BSS) play a crucial role in enhancing power quality, reliability, and renewable energy integration. However, multilevel converters used in BSS often face challenges of high component count and capacitor voltage balancing. This study addresses these issues by proposing a single-phase battery storage system based on a seven-level packed U-cell (PUC) converter with two DC-links. Each DC-link is regulated by a bidirectional DC-DC converter, ensuring stable capacitor voltage control and enabling seamless operation in both grid-tied and stand-alone modes under a unified control scheme. Unlike conventional approaches that redesign controllers for different modes, the proposed system only modifies the reference voltage generation for pulse-width modulation. Simulation results confirm effective capacitor voltage balancing, smooth bidirectional active power transfer, and reliable reactive power exchange, allowing the BSS to function as a single-phase STATCOM. Harmonic analysis demonstrates compliance with IEEE 519–2014 standards, ensuring high power quality in grid-tied and stand-alone operation.

Downloads

Download data is not yet available.

References

[1] Global Status Report for Buildings and Construction - Beyond foundations: Mainstreaming sustainable solutions to cut emissions from the buildings sector. United Nations Environment Programme (UNEP), 2024. Accessed: Sep. 30, 2025. [Online]. Available: https://wedocs.unep.org/handle/20.500.11822/45095.

[2] M. Parzen, F. Neumann, A. H. Van Der Weijde, et al., “Beyond cost reduction: improving the value of energy storage in electricity systems,” Carbon Neutrality, vol. 1, Art. no. 26, pp. 1–21, 2022. doi: 10.1007/s43979-022-00027-3.

[3] S. Zhang, Y. Li, E. Du, et al., “Research on carbon-reduction-oriented demand response technology based on generalized nodal carbon emission flow theory,” Energies, vol. 17, no. 18, Art. no. 4672, 2024. doi: 10.3390/en17184672.

[4] M. H. Taabodi, T. Niknam, S. M. Sharifhosseini, H. A. Aghajari, and S. Shojaeiyan, “Electrochemical storage systems for renewable energy integration: A comprehensive review of battery technologies and grid-scale applications,” J. Power Sources, vol. 641, Art. No. 236832, 2025. doi: 10.1016/j.jpowsour.2025.236832.

[5] B. Yildirim, M. A. Elgendy, A. Smith, M. C. Kulan, and B. Akbal, “Modular-Multi-Port-Converter-Based Battery Energy Storage System with Integrated Battery Management Functions,” Energies, vol. 18, no. 12, Art. no. 3142, 2025. doi: 10.3390/en18123142.

[6] I. U. Khan and M. Jamil, “Energy Arbitrage Analysis for Market-Selection of a Battery Energy Storage System-Based Venture,” Energies, vol. 18, no. 16, Art. no. 4245, 2025. doi: 10.3390/en18164245.

[7] I. Thakur, “Economic viability of battery storage systems in energy-only electricity markets,” in Smart Grid and Renewable Energy Systems. ICRCE 2024. Lecture Notes in Electrical Engineering, vol. 1238. Springer, Singapore, 2024. doi: 10.1007/978-981-97-5782-4_9.

[8] S. Agnew and P. Dargusch, “Consumer preferences for household-level battery energy storage,” Renewable Sustainable Energy Rev., vol. 75, pp. 609–617, 2017. doi: 10.1016/j.rser.2016.11.030.

[9] Z. Jin, X. Liu, W. Zhang, G. Deng, Z. Wang, N. Zhou, and J. Wang, “Operation strategies design and optimal storage capacity selection of PV-energy storage systems for residential houses under different electricity price modes,” Int. J. Green Energy, pp. 1–20, 2025. doi: 10.1080/15435075.2025.2552487.

[10] E. Chatterji and M. D. Bazilian, “Battery storage for resilient homes,” IEEE Access, vol. 8, pp. 184497–184511, 2020. doi: 10.1109/ACCESS.2020.3029989.

[11] O. Youssef and K. Al-Haddad, “A novel high energetic efficiency multilevel topology with reduced impact on supply network,” in Proc. 34th Annu. Conf. IEEE Ind. Electron., Orlando, FL, USA, Nov. 10–13, 2008, pp. 489–494. doi: 10.1109/IECON.2008.4758002.

[12] H. Vahedi, H. Y. Kanaan, and K. Al-Haddad, “PUC converter review: Topology, control and applications,” in Proc. 41st Annu. Conf. IEEE Industrial Electronics Society (IECON), Yokohama, Japan, 2015, pp. 4334–4339, doi: 10.1109/IECON.2015.7392774.

[13] H. Vahedi, A. Dehghanzadeh, K. Al-Haddad, "Static VAr compensator using packed U-cell based multilevel converter," In Proc. IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering, Doha, Qatar, 2018, pp. 1-5, doi: 10.1109/CPE.2018.8372576.

[14] S. Pal, B. Avik, V. Muneer, "Open-loop capacitor voltage balancing of a nine-level packed u-cell converter," IEEE Transactions on Industry Applications, vol. 60, no. 4, pp. 6446-6457, 2024, doi: 10.1109/TIA.2024.3397776.

[15] S. Abdeslem, F. Krim, A. Laib et al., “Model predictive control for single-phase active power filter using modified packed U-cell (MPUC5) converter,” Electric Power Systems Research, vol. 180, art. no. 106139, 2020, doi: 10.1016/j.epsr.2019.106139.

[16] M. Sleiman, H. F. Blanchette, K. Al-Haddad et al., “A new 7L-PUC multi-cells modular multilevel converter for AC-AC and AC-DC applications,” in Proc. IEEE Int. Conf. Industrial Technology (ICIT), Seville, Spain, 2015, pp. 2514–2519, doi: 10.1109/ICIT.2015.7125468.

[17] S. Pal and A. Bhattacharya, “Seven-level packed-U cell-based standalone PV system for water pump application,” in Proc. IEEE Int. Conf. Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 2022, pp. 1–6, doi: 10.1109/PEDES56012.2022.10080008.

[18] A. Laib et al., “Novel finite-set synergetic mode predictive control of stand-alone renewable energy systems using LC-filtered nine-level packed E-cell inverter,” in Proc. 2025 IEEE Industry Applications Society Annual Meeting (IAS), 2025, doi: 10.1109/IAS62731.2025.11061485.

[19] H. Iqbal, M. Tariq, M. Sarfraz, M. A. Anees, W. Alhosaini, and A. Sarwar, “Model predictive control of Packed U-Cell inverter for microgrid applications,” Energy Reports, vol. 8, pp. 813–830, 2022, doi: 10.1016/j.egyr.2022.05.188.

[20] H. Vahedi, “5-Level Packed U-Cell (PUC5) active front-end rectifier,” IEEE Open Journal of Power Electronics, 2025, doi: 10.1109/OJPEL.2025.3576301.

[21] N. Mishra, B. Singh, S. K. Yadav, et al., “Power quality improvement in fifteen-level PUC converter for solar PV grid-tied applications,” IEEE Trans. Ind. Appl., vol. 59, no. 4, pp. 4264–4273, 2023. doi: 10.1109/TIA.2023.3260067.

[22] R. Hariri, F. Sebaaly, K. Al-Haddad, and H. Y. Kanaan, “MPC Design and Comparative Analysis of Single-Phase 7-Level PUC and 9-Level CSC Inverters for Grid Integration of PV Panels,” Energies, vol. 18, no. 19, Art. no. 5116, 2025. doi: 10.3390/en18195116.

[23] T. L. Belahcene, H. Afghoul, O. Kraa, and D. E. Zábia, “Optimized control of PUC7 inverter in photovoltaic grid integration,” Electrotehnica, Electronica, Automatica (EEA), vol. 73, no. 3, pp. 28–38, 2025. doi: 10.46904/eea.25.73.3.1108004.

[24] R. Hariri, F. Sebaaly, K. Al-Haddad, and H. Y. Kanaan, “Modeling and Model Predictive Control of a 7-Level Packed U-Cell Converter for Grid-Tied PV Applications,” in Proc. IECON 2024 - 50th Annu. Conf. IEEE Ind. Electron. Soc., Chicago, IL, USA, Oct. 2024, pp. 1–6. doi: 10.1109/IECON55916.2024.10905694.

[25] H. Y. Hasirci and A. M. Vural, “Design and experimental verification of PUC multilevel inverter-based PMSG wind energy conversion system,” Appl. Sci., vol. 13, no. 24, Art. no. 13018, pp. 1–23, 2023. doi: 10.3390/app132413018.

[26] Ananthi, K., Manoharan, S. Performance Analysis of Effective Controller for Active Power Filter using PUC5 Inverter for Improving Power Quality. J. Electr. Eng. Technol. 17, 2107–2121 (2022). https://doi.org/10.1007/s42835-022-01039-w.

[27] S. Khettab, A. Kheldoun, and R. Bradai, “A novel Runge-Kutta-based model predictive controller for PUC7-based single-phase shunt active power filter,” Comput. Electr. Eng., vol. 123, Art. no. 110051, 2025. doi: 10.1016/j.compeleceng.2024.110051.

[28] N. Decun, H. Tianqu, G. Feng, et al., “Cascaded packed U-cell STATCOM with low capacitance and its third harmonic control,” in Proc. IEEE Appl. Power Electron. Conf. Expo., New Orleans, LA, USA, Mar. 15–19, 2020, pp. 529–534. doi: 10.1109/APEC39645.2020.9124459.

[29] S. Atanalian, F. Sebaaly, R. Zgheib, and K. Al-Haddad, “Z Packed U-cell modular multilevel converter for STATCOM applications,” IEEE Access, vol. 13, pp. 78795–78800 (Page range estimated), 2025. doi: 10.1109/ACCESS.2025.3566015.

[30] Makhamreh H, Kanzari M, Trabelsi M. Model Predictive Control of a PUC5-Based Dual-Output Electric Vehicle Battery Charger. Sustainability. 2023; 15(19):14483. https://doi.org/10.3390/su151914483.

[31] A. M. Rauf, M. Abdel-Monem, T. Geury, et al., “A review on multilevel converters for efficient integration of battery systems in stationary applications,” Energies, vol. 16, no. 10, Art. no. 4133, 2023. doi: 10.3390/en16104133.

[32] F. Eroǧlu, M. Kurtoǧlu, and A. M. Vural, “Bidirectional DC–DC converter based multilevel battery storage systems for electric vehicle and large‐scale grid applications: A critical review considering different topologies, state‐of‐charge balancing and future trends,” IET Renewable Power Generation, vol. 15, no. 5, pp. 915–938, 2021. doi: 10.1049/rpg2.12042.

[33] H. A. Khalid, N. A. Al-Emadi, L. Ben-Brahim, et al., “A novel model predictive control with an integrated SOC and floating DC-link voltage balancing for 3-phase 7-level PUC converter-based MV BESS,” Int. J. Electr. Power Energy Syst., vol. 130, Art. no. 106895, 2021. doi: 10.1016/j.ijepes.2021.106895.

[34] A. Azeem, M.K. Ansari, M. Tariq, et al., “Design and modeling of solar photovoltaic system using seven-level packed u-cell (PUC) multilevel inverter and zeta converter for off-grid application in India,” vol. 19, issue 2, pp. 101-102, 2019, doi.org/10.26650/electrica.2019.18053.

[35] X. Shunlong, M. Metry, M. Trabelsi, et al., “A model predictive control technique for utility-scale grid connected battery systems using packed U cells multilevel inverter,” in Proc. 42nd Annu. Conf. IEEE Ind. Electron. Soc., Florence, Italy, Oct. 23–26, 2016, pp. 5953–5958. doi: 10.1109/IECON.2016.7793712.

[36] A. H. Azis, R. P. Eviningsih, M. R. D. Abdilla, N. S. Ramadhan, and N. A. Windarko, “Packed U-Cell Inverter with Mamdani Type Fuzzy Logic Controller to Regulate Output Voltage for Off-Grid Applications,” in Proc. 2023 Int. Electron. Symp. (IES), Denpasar, Indonesia, Sep. 11–13, 2023, pp. 64–69. doi: 10.1109/IES59143.2023.10242569.

[37] T. B. J. Gemilang, M. Z. Efendi, N. A. Windarko, F. Ebrahimi, and M. R. D. Abdilla, “Voltage Regulation Optimization of a Modified Seven-Level Packed U-Cell Inverter with Mamdani Fuzzy Logic,” in Proc. 2024 Int. Electron. Symp. (IES), Denpasar, Indonesia, 2024, pp. 60–65. doi: 10.1109/IES63037.2024.10665812.

[38] K. K. Malgır and E. Kılıç, “Elektrikli Araçlardan Şebekeye Enerji Verme (V2G) Sistemlerinde Packed-U Cell İnverter Tasarımı,” Kahramanmaraş Sütçü İmam Üniv. Mühendislik Bilim. Dergisi, vol. 28, no. 3, pp. 1591–1603, 2025. doi: 10.17780/ksujes.1737399.

[39] FF600R17ME4 700 V, 600 A dual IGBT module datasheet. (2016). Infineon Technologies. [Online]. Available: https://www.infineon.com/dgdl/Infineon-FF600R17ME4-DS-v03_00-EN.pdf?fileId=db3a304333b8a7ca0133c67bfb6d6156.

[40] I. Baboselac, Ž. Hederić, and T. Benšić, “MatLab simulation model for dynamic mode of the Lithium-Ion batteries to power the EV,” Tehnički glasnik, vol. 11, no. 1–2, pp. 7–13, 2017.

[41] E. J. Lee and K. B. Lee, “Performance improvement of cascaded H-bridge multilevel inverters with modified modulation scheme,” J. Power Electron., vol. 21, pp. 541–552, 2021. doi: 10.1007/s43236-020-00200-w.

Downloads

Published

29-12-2025

Issue

Section

Research Articles

How to Cite

[1]
A. M. Vural, “Bidirectional Puc Converter Based Battery Storage System for Active and Reactive Power Control”, J. Appl. Methods Electron. Comput., vol. 13, no. 4, pp. 93–105, Dec. 2025, doi: 10.58190/ijamec.2025.146.

Similar Articles

1-10 of 219

You may also start an advanced similarity search for this article.