Multi-criteria evaluation model: an application of MRP parameterization

Authors

DOI:

https://doi.org/10.18100/ijamec.817719

Keywords:

Multi-Criteria Decision Analysis (MCDA), Optimization, Learning, Decision Support, Parameterization

Abstract

This paper presents a multi-criteria evaluation model applied to the parameterization of the MRP method. Existing optimization approaches that address this problem tend to adopt a means of simulation. A simulated solution is characterized by a pair (parameters, performance indicators). In the context of the evaluation of solutions, the work of Barth, Damand et al. (2003) propose a heuristic approach to extracting knowledge from a solution set. The approach is based on the definition of a multi-criteria solution comparison function. The objective of this paper is to present the detailed modeling of this comparison function. Ultimately, this result contributes to the formalization of a multicriteria optimization problem. A problem solving strategy is proposed.

Downloads

Download data is not yet available.

References

Bai, X., J. S. David, J. J. Kanet, S. Cantrell, and J. W. Patterson. 2002. “Schedule Instability, Service Level and Cost in an Material Requirements Planning System.” International Journal of Production Research 40 (7): 1725–1758. doi:10.1080/00207540110119973.

Barth, M., D. Damand, and R. De Guio. 2003. “How Can We Ascertain, Understand and Interpret the Performance Level of A Production System? A Visual Method: “The Plan of Preferences”.” Production Planning and Control 14 (3): 233–243. doi:10.1080/0953728031000089997.

Blumenthal, A. L. 1977. The Process of Cognition, Prentice-Hall. ISBN 0137229836, 9780137229833.

Brans J.P., and P. Vincke. 1985. "A preference ranking organization method: (The PROMETHEE Method for Multiple Criteria Decision-Making)". Management Science 31 (6): 647-656.

Brans J.P., P. Vincke, and B. Mareschal. 1986. "How to select and how to rank projects: The PROMETHEE method". European Journal of Operationnal Research 24: 228-238.

Chiang, C.-Y., W. T. Lin, and N. C. Suresh. 2016. “An Empirically-Simulated Investigation of the Impact of Demand Forecasting on the Bullwhip Effect: Evidence from U.S. Auto Industry. ”International Journal of Production Economics 177 (1): 53–65. doi:10.1016/j.ijpe.2016.04.015.

Chu, C. H., and J. C. Hayya. 1988. “Buffering Decisions under MRP Environment: A Review.” Management Science 16 (4): 325–331.

Damand, D., R. Derrouiche, and M. Barth. 2013a. “Parameterization of the MRP Method: Automatic Identification and Extraction of Properties.” International Journal of Production Research 51 (18): 233–243. doi:10.1080/00207543.2013.810819.

Damand, D., O. Ben Ammar, E. Lepori, and M. Barth. 2013b. “Analysis Method of the Relations between MRP Parameter and Performance Indicator Based on a Literature Review. IFAC MIM 2013, Conference on Manufacturing Modelling, Management and Control, Saint Petersburg.” IFAC Proceedings Volumes 46 (9): 377–382. doi:10.3182/20130619-3-RU-3018.00606.

Damand, D., R. Derrouiche, M. Barth, and S. Gamoura. 2019. "Supply chain planning: potential generalization of parameterization rules based on a literature review." Supply Chain Forum: An International Journal 20 (3): 228-245. doi: 10.1080/16258312.2019.1589892.

Dolgui, A., and C. Prodhon. 2007. “Supply Planning under Uncertainties in MRP Environments: A State of the Art.”Annual Reviews in Control 31 (2): 269–279. doi:10.1016/j.arcontrol.2007.02.007.

Guide, V. D. R., and R. Srivastava. 2000. “A Review of Techniques for Buffering against Uncertainty with MRP Systems.” Production Planning and Control 11 (3): 223–233. doi:10.1080/095372800232199.

Koh, S. C., M. H. Jones, S. M. Saad, S. Arunachalam, and A. Gunasekaran. 2000. “Measuring Uncertainties in MRP Environments.” International Journal of Logistics Information Management 13 (3): 177–183. doi:10.1108/09576050010326574.

Koh, S. C. L., S. M. Saad, and M. H. Joness. 2002. “Uncertainty under MRP-planned Manufacture: Review and Categorization.” International Journal of Production Research 40 (10): 2399–2421. doi:10.1080/00207540210136487.

Pergher, I., and A. Teixeira de Almeida. 2017. “A Multi-Attribute Decision Model for Setting Production Planning Parameters.” Journal of Manufacturing Systems 42: 224–232. doi:10.1016/j.jmsy.2016.12.012.

Lee, T. S., E. Everett, and J. R. Adam. 1986. “Forecasting Error Evaluation in Material Requirements Planning (MRP) Production Inventory Systems.” Management Science 32 (9): 1186–1205. doi:10.1287/mnsc.32.9.1186.

Murthy, D. N. P., and L. Ma. 1991. “MRP with Uncertainty: A Review and Some Extensions.” International Journal of Production Economics 25 (1–3): 51–64. doi:10.1016/0925-5273(91)90130-L.

Roy, B. 1996. Multicriteria methodology for decision aiding. Boston: Springer. Doi 10.1007/978-1-4757-2500-1.

Sahin, F., P. Robinson, and A. Narayanan. 2013. “Rolling Horizon Planning in Supply Chains: Review, Implications and Directions for Future Research.” International Journal of Production Research 51 (18): 5413–5436. doi:10.1080/00207543.2013.775523.

Sridharan, V., and W. L. Berry. 1990. “Master Production Scheduling Make-To-Stock Products: A Framework for Analysis.” International Journal of Production Research 28 (3): 541–558. doi:10.1080/00207549008942735.

Xie, J., T. S. Lee, and X. Zhao. 2004. “Impact of Forecasting Error on the Performance of Capacited Multi-Item Production Systems.” Computers & Engineering 46 (2): 205–219.

Yeung, J. H. Y., W. C. K. Wong, and L. Ma. 2000. “Parameters Affecting the Effectiveness of MRP Systems: A Review.” International Journal of Production Research 36 (2): 313–331. doi:10.1080/002075498193750.

Downloads

Published

31-12-2020

Issue

Section

Research Articles

How to Cite

[1]
“Multi-criteria evaluation model: an application of MRP parameterization”, J. Appl. Methods Electron. Comput., vol. 8, no. 4, pp. 295–301, Dec. 2020, doi: 10.18100/ijamec.817719.

Similar Articles

11-20 of 161

You may also start an advanced similarity search for this article.