Automatic System for Classification of Precipitation Cells

Authors

  • Azzaz NAFISSA
  • Haddad BOUALEM

DOI:

https://doi.org/10.18100/ijamec.77967

Keywords:

Fractal Lacunarity, Fractal Dimension, Convective cells, Stratiform cells, Graphical Interface.

Abstract

This paper presents an automatic system for classification of the precipitations cells, conceived around a graphic interface. This interface is based on the fractal geometry and particularly on fractal dimension and the fractal lacunarity. We have initially analyzed these two parameters and we showed that they can be useful as discriminating parameters. Then, we developed a graphical interface which makes possible to identify in real time the type of cells. This tool was tested on different areas from the earth and showed its efficiency whatever the studied site. This system can be used in weather radar for the improvement of the precipitations estimations and in telecommunication for the correction of the signal for the microwave links.

Downloads

Download data is not yet available.

References

A. Tokey and D. A. Short (1996). Evidence from tropical raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds. NASA Goddard Space Flight Center, Greenbelt, Maryland.

N. E. Anagnostou (2004). A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteorol. Appl., vol. 11, pp. 291-300.

M. I. Biggerstaff and Listemaa S. A. (2000). An improved scheme for convective/stratiform echo classification using radar reflectivity. Am. Meteorol. Soc., vol. 39, pp. 2129–213.

M. Steiner, R. A. Jr. Houze, and S. E. Yuter (1995). Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteorol., vol. 34.

R. A. Houze, Jr. (1993). Cloud Dynamics. Academic Press.

J. Gao, D. J. Stensrud (2012). Assimilation of Reflectivity Data in a Convective-Scale, Cycled 3DVAR Framework with Hydrometeor Classification. J. Atmos. Sci., vol. 69, pp. 1054–1065.

C. Gao, A. Robock, S. Self, J. B. Witter, J. P. Steffenson, H. B. Clausen, M. L. Siggaard-Andersen, S. Johnsen, P. A. Mayewski, and C. Ammann (2006). The 1452 or 1453 AD Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years. J. Geophys. Res., vol. 111.

E. N. Anagnostou, and W. F. Krajewski (1998). Calibration of the WSR-88D precipitation processing subsystem. Wea. & Forecasting, vol. 13, pp. 396–406.

Y. Yang, X. Chen, and Q. Youcun (2013). Classification of convective/stratiform echoes in radar reflectivity observations using a fuzzy logic algorithm. Journal of Geophysical Research Atmospheres, vol. 118, pp. 1–10.

F. Tridon, J. Van Baelen and Y. Pointin (2010). Identification of Convective and Stratiform Areas towards improved precipitation estimation with a local area X-band radar. Sibiu, Romania, Advance in Radar Technology, pp. 219–225.

A. Nzeukou, H. Sauvageot (2002). Distribution of Rainfall Parameters near the Coasts of France and Senegal. Journal of Applied Meteorology, vol. 41 :1, pp. 69-82.

H. Sauvageot, G. Despaux (1990). SANAGA : A digital acquisition and visualization of radar data for the validity of satellite precipitation estimates, Standby climate satellite. vol. 31, pp. 51-55.

D. B. Wolff, D. A. Marks, E. Amitai, D. S. Silberstein, B., L. Fisher, A. Tokay, J. Wang, and J. L. Pippitt (2005). Ground Validation for the Tropical Rainfall Measurement Mission (TRMM). J. Atmos. Ocean. Tech., vol. 31. pp. 51-55.

B.B. Mandelbrot (1983). The fractal geometry of nature. Freeman, W. H. Freeman and Company, New York, USA.

K. I. Kilic, R. H. Abiyev (2011). Exploiting the synergy between fractal dimension and lacunarity for improved texture recognition. Signal Processing, vol. 91, pp. 2332–2344.

S. Lovejoy and D. Schertzer (1990). Multifractals, Universality classes and satellite and radar measurement of cloud and rain fields. Journal of geophysical research, vol. 95(D3), pp. 2021- 2034.

K. Falconer (1990). Fractal Geometry. Mathematical foundations and applications. John Wiley & Sons, Chichester, England, pp. 288.

C. Allain, M. Cloitre (1991). Characterizing the lacunarity of random and deterministic fractal sets. Physical Review A, vol. 44, pp. 3552–3558.

N. Azzaz and B. Haddad (2013). Structure Analysis and Classification of Precipitation Cells by Fractal Geometry. Journal of Electronics, Science and Technology. vol. 12, in press.

D. Schertzer and S. Lovejoy (1992). Hard and soft multifractal processes. Physical Review A, vol. 185(1-4), pp. 187-194.

Z. Annamaria, R. Eleonori,, M. Pierluigi, R. Rossi, and R. Murri (2005). Medical Imaging and Osteoporosis: Fractal’s Lacunarity Analysis of Trabecular Bone in MR Images. vol. 05, pp. 1063-7125.

Downloads

Published

29-06-2015

Issue

Section

Research Articles

How to Cite

[1]
“Automatic System for Classification of Precipitation Cells”, J. Appl. Methods Electron. Comput., vol. 3, no. 3, pp. 189–193, Jun. 2015, doi: 10.18100/ijamec.77967.

Similar Articles

1-10 of 31

You may also start an advanced similarity search for this article.