Scrutiny on the produced spin current in spin circuit considering Nano-magnetic nodes and copper Nano-channel
DOI:
https://doi.org/10.18100/ijamec.84621Keywords:
Circuit, spin, current, conduction, nano-channelAbstract
Electronics of spin or spintronics is a newfangled field which its purpose is to study the role of electron's spin in solid-state devices. spintronic devices require spin current. Spin current is a difference between spin-up and spin-down electric currents. This article reviews the spin current. In this paper, we intend to calculate spin current in two spin circuits' branches. Also we investigate simultaneously effects of nano-channel length and cross section area variations on it. Our findings show that spin current in series branch increase by simultaneously length of nano-channel reduction and rising of cross section area. For spin flip branches, we can reduce dissipation by simultaneously length and cross section area nano-channel reduction. We choose copper metal as nano-channel because of longer spin diffusion length, less spin current dissipation and equality of its lattice constant with those of permalloy.Downloads
References
I. Žutić, J. Fabian, and S. Das Sarma; “Spintronics: Fundamentals and applications”; Rev. Mod. Phys. 76, 323 (2004).
A. Brataas, Y.V. Nazarov, G.E.W. Bauer; “Finite element theory of transport in ferromagnet-normal metal systems”; Phys. Rev. Lett. 84, 24812484 (2000).
S. Srinivasan, A. Sarkar, B. Behin-Aein, and S. Datta; “All Spin Logic Device with Inbuilt Nonreciprocity Magnetics”; IEEE Transactions on. 47, 4026 (2011).
B. Behin-Aein, A. Sarkar, S. Srinivasan and S. Datta; “Switching energy-delay of all spin logic devices”; Appl. Phys. Lett. 98, 123510 (2011).
. Albrecht, J. D., and D. L. Smith, 2002, “Electron spin injection at a Schottky contact,” Phys. Rev. B 66, 113303.
. Albrecht, J. D., and D. L. Smith, 2003, “Spin-polarized electron transport at ferromagnet/semiconductor Schottky contacts,” Phys. Rev. B 68, 035340.
. Vlutters, R., O. M. J. van ’t Erve, R. Jansen, S. D. Kim,and J. C. Lodder, 2001, “Modeling of spin-dependent hot-electron transport in the spin-valve transistor,” Phys. Rev.B 65, 024416.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 International Journal of Applied Methods in Electronics and Computers
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.