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Abstract: In this paper, the signal flow graph technique and Mason gain formula are applied for extracting the model and transfer 

functions from control to output and from input to output of a buck-boost converter. In order to investigate a controller necessity for the 

converter of assumed parameters, the frequency and time domain analysis are done and the open loop system characteristics are verified 

and the needed closed loop controlled system specifications are determined. Finally designing a controller for the mentioned converter 

system based on the extracted model is discussed. Then, a modern control design method is employed for regulator design. For this 

purpose, a full state feedback control for pole placement is applied. The simulation results are used to show the performance of the 

proposed modeling and regulation method. 
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1. Introduction 

Recently, the different type of dc-dc converters such as buck-

boost converter are mostly used in industrial applications [1- 2]. 

This paper focuses on modelling this converter by means of 

signal flow graph technique and then analysing the obtained 

models of the converter is investigated. For achieving an effective 

controller for a dc-dc converter, a good and proper model of the 

converter is needed [3]. In order to get the frequency response of 

the converters to design a controller and compensator circuits, 

modelling of the system is inevitable. The model describes how 

control actions and disturbances are expected to affect the 

behaviour of the system. Previous works present different models 

for dc-dc converters. Regarding that the power electronic 

converters include nonlinear elements like switches and diodes, 

then modelling of them needs linearization. So, applying 

averaging and linearization techniques has a special importance. 

After linearization, the inside model of the system is extractable 

and therefore investigating the frequency response will be 

possible [4-6]. 

Modelling dc-dc converters by using small signal linearization 

and averaging techniques cause complex equations. Solving these 

equations for basic converters is not a problem, but for high order 

converters, dealing with them will be more difficult. 

In [7], both nonlinear and average linear models for a dc-dc 

converter have been presented. In [8-9], in order to derive a 

mathematical model of a dc-dc converter and study the transient 

states of it, a combination of Laplace and Z-transforms is 

employed. 

Although a converter including switches is a nonlinear system, 

but it can be decomposed to two linear circuits; one for on-state 

and the other for off-state of the switch. Then, these two linear 

circuits are illustrated by means of two signal flow graphs. 

Composition of the two sub-graphs using switching branches 

reaches to the graph of the whole converter. Switching branches 

are the nonlinear parts of the converters. Thus, modelling process 

is limited to the switching branches. In [10-15], a signal flow 

graph method has been presented for modelling a dc-dc 

converter. Then, by using the Mason gain formula any desired 

transfer function of the system might be extracted and can be 

used to design any proper controller. 

The proposed technique in this paper, give greatly simplified 

mathematical and graphical representation of the systems based 

on the signal flow graph of the converter. These methods have 

great advantage because of simplicity and being capable of giving 

any desired transfer function of the system to design a controller 

for a determined variable. Furthermore, by using the proposed 

graphical method, the intended models can be extracted and can 

be used for surveying nonlinear and dynamic behaviour of 

switching converters. 

The main contribution of this paper is to derive model of the 

converter by using the proposed signal flow graph method. Then, 

the results can be used in design a model- based controller for the 

buck-boost converter. In this process, applying the mentioned 

signal flow graph technique and Mason gain formula, the input to 

output, control to output transfer functions are obtained. Then, the 

frequency domain responses in form of Bode magnitude and 

phase diagrams are achieved and the proper full state feedback 

controller in form of a pole placement method is designed. The 

proposed controller uses the desired poles given by a filter 

prototype that is optimal with respect to an integral performance 

index and discusses how to select a weighting parameter that 

determines the closed-loop pole locations [16]. At last, the 

simulation results by using the described modelling and 

controlling methods are given to show the good performance and 

behaviour of the modelling and control methods. 

2. Review on DC-DC Buck-Boost Converter 

The output voltage of a buck-boost dc-dc converter can be more 

or less than the input voltage. The converter has two operating 

modes. The first mode is when the switch is on and the second 

one is for off state of the switch. In both operating modes, the 

switch and the diode would be complementary. The output 

voltage has the opposite polarity of the input voltage. So, the 

converter is also referred to as a reverser converter. Fig. 1(a) 

shows the power circuit of the buck-boost converter. In this 

figure, gv  is the input voltage; L , C , R  and LR  refer to the 

inductor, capacitor, load resistor and parasitic resistance of the 
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inductor, respectively. Lv  and ov  are the inductor voltage and the 

output voltage, respectively. gi , Li  and oi  are the input current, 

inductor current and the output current, respectively. The 

equivalent circuits of the two mentioned operating modes of the 

converter are shown in Fig. 1(b) and 1(c). 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Buck-boost dc-dc converter; (a) the power circuit; (b) 

equivalent circuit in on-state; (c) equivalent circuit in off-state 

3. The Proposed Graph Modelling Method 

Before designing a controller for a system, the control system 

designer must know the system’s characteristics. For example, is 

the open-loop system stable? Are there dominant poles? Are there 

poles that may be neglected during design? Is the system 

controllable by using the selected inputs? Can an estimator be 

designed based on the measured outputs? These types of 

questions should be answered before trying to design a controller 

for the system. 

The nonlinear circuit of the converter is modelled as a small-

signal continuous linear time invariant (LTI) system by using 

averaging technique. The model is a mathematical description of 

the behaviour of the real system that is enough for performing 

stability test. 

In order to model the converter by using the first method the 

below steps should be done: 

 First, the state equations for both operating modes are 

extracted using Kireshof voltage and current laws. 

 Then, the obtained state equations at the on time 

interval is multiplied in 1d  and at the off time interval 

is multiplied in 1 21 d d  , then they are added to each 

other. 1d  is considered as the switch conduction 

coefficient and 2d  as the switch non-conduction 

coefficient. 1d  can range in 0 and 1 interval. The result 

is the averaged equations. Hence, the averaged 

equations are related to both on and off time intervals of 

the switch. In averaged equations, variables in form of 

x  are average values which are different from the 

instantaneous variables in form of x . 

 In averaged equations, dc and ac variables are 

substituted and rewritten with X  and x , respectively. 

Considering all variables in form of x X x   the 

small signal linearization is done. Regarding that the 

product of two dc variables is a dc one and the product 

of one dc and one ac variable is an ac variable, also the 

product of two ac variables is zero, the obtained 

equations are rewritten. 

 Finally, the extracted ac equations from the previous 

step are used to achieve the signal flow graph of the 

converter. 

The whole state equations, the averaged and linearized form of 

them are given in Table 1. Model of the converter without the 

parasitic resistor of the inductor is extracted by using the 

proposed graphical method. 

3.1. Proposed Signal Flow Graph for the Converter 

AC small signal equations are used to plot the signal flow graph 

shown in Fig. 2. In these equations there are two variables; ov  

and 1Li , and two inputs; d  and gv . The graph is depicted for all 

independent variables ( , )sx x  by using nodes and paths between 

two nodes. 

In order to extract transfer functions from signal flow graph, 

Mason gain formula 

1

n

out k k

in k

y P

y


 
   
  will be used as given 

in the following. 

For calculating transfer functions, the gain of distinct loops, non-

touching loops, forward paths from each input to output are 

extracted as Table 2. The obtained transfer functions in existence 

and absence of the parasitic resistance of the inductor are given in 

Table 3. 
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Figure 2. Signal flow graph for the buck-boost dc-dc converter by using 

the proposed method 

4. Simulation Results for Frequency Response of 
the Converter 

In order to survey the behaviour of the converter from stability 

point of view, a buck-boost dc-dc converter with the component 

values given Table 4 is considered. The root-locus diagrams for 

previously extracted transfer functions of the converter are shown 

in Fig. 3. The information obtained from these diagrams is given 

in Table 5. For analysis purpose the duty cycle of the converter is 

supposed to be 0.335. Fig. 4 shows the magnitude and phase 

Bode diagrams. 
 

From simulation results, it can be concluded that the system, 

/ov d  is unstable and phase and gain margins for /ov d  

become; 21.6GM dB   and 61.2degPM   . From root-locus 

diagrams, the mentioned system has a zero in right hand side of 

the imaginary margin. In order to have a more stable system the 

proper controller should be designed for the mentioned transfer 

function. In the next section, designing the proposed model- 

based full state feedback controller will be explained.  
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Table 1. Achieved equations from converter operating in two modes, averaged and linearized form of them 

State equations for Fig. 1(b) State equations for Fig. 1(c) 
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Table 2. Loop and path information of the signal flow graph and the obtained transfer functions 

Distinct loops Distinct loops gain Non-touching loops gain 
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Table 3. Achieved transfer functions for buck-boost converter in existence of the parasitic resistor of the inductor and without it 

Transfer functions in existence of the parasitic resistor of the inductor 

( LR ) 

Transfer functions in absence of the parasitic resistor of the inductor 

( LR ) 
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Table 4. The buck-boost converter component values 

L  0.43mH  

C  33 F  

R  10  

LR  0.25  

gV  15v  

 
Table 5. Information obtained from poles and zeros of the transfer functions of the model
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Poles Poles Zero 

Value 3( 1.81 5.27 ) 10i    
3( 1.81 5.27 ) 10i    42.77 10  

Damping 0.324  0.324  1  

Overshoot (%) 34.1  34.1  0  

Frequency (rad/s) 35.57 10  
35.57 10  

42.77 10  
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Figure 3. Root locus diagram; (a) o gv v ; (b) ov d  with 0.25LR    
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5. The Proposed Model-Based Full State Feedback 
Controller Configuration 

Fig. 5 shows the step response of the system. This figure shows 

that the open-loop system does not reject disturbances on the 

input voltage and cannot regulate the output voltage. 

The control action covers pole placement by using full state 

feedback. The whole configuration of the controller beside the 

controlled system is plotted in Fig. 6. In order to control the 

converter based on the previously extracted model, the state space 

form of the controlled transfer function is calculated. In Fig. 6, 

A , B , dB , and C  are the state space matrixes of the system 

and K  is the feedback gain. In the whole design process, the 

control input to the buck-boost converter is changed the duty 

cycle used to turn on and off the switch. 
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Figure 5. Step response of the open loop system 

 

 

 
Figure 6. The whole system configuration with the full state feedback 

controller 

 
 

6. Pole Placement By Using Ackermann’s 
Formula 

After checking the system controllability and observability by 

using the related matrixes, now the pole placement is done. 

Ackermann’s formula is used for single-input, single-output 

(SISO) systems like the buck-boost converter. Ackermann’s 

formula is: 

 

1 1
1 1[0 0 ...1] ( ... )n n

c n nK M A A A I   
                      (1) 

 

In above equation, cM  is the controllability matrix and n  is the 

order of the system. 

As the controllability matrix is a full rank matrix, the system is 

fully controllable. About the observability issue, the system turns 

fully observable. Then any proper pole placement method can be 

used to get the desired behaviour of the system.  

6.1. Pole Placement 

In a completely controllable system in which all the states are 

accessible, in order to place the poles at any desired location, 

feedback of all of the states through a gain matrix can be 

employed. The control law for such a full state feedback is: 

u KX                                                                                      (2) 

 

The matrix K
 
is a gain matrix used to place the poles of the 

system at any desired locations.  

6.2. Regulating the Converter Output Voltage with State 
Feedback Compensator 

In order to achieve a stable control in all operating ranges of the 

converter system by using the obtained model, the poles should 

be placed in a left location. One problem with this matter is 

selecting desirable pole locations. Two main methods exist for 

this issue [16]: 

1) Choosing pole locations in such a way that a dominant 

complex pole pair exists. This technique is used for 

designing tracking systems, for which the transient time 

domain characteristics (rise time, overshoot, settling 

time ...) can bring out the desired dominant pole 

locations. 

2)  Choosing pole locations specified to give a prototype 

time domain response, e.g., filter pole locations. 

The second method is used for pole placement with full state 

feedback control. In [16] assigning the system poles to prototype 

locations that minimize a cost function is discussed. This method 

is known as the integral of the time-weighted absolute error 

(ITAE) to an input signal as follows 

 

0

( )ITAEJ t e t dt


                                                                        (3) 

Since the aim of the control system is to regulate the buck-boost 

converter output voltage regarding the input voltage disturbances, 

then the desired output is rejection of disturbance deviations from 

the nominal operating point (the set point for the steady state 

error). The error between the desired output and the system 

output is defined as ( ) ( ) ( )e t r t y t  . As ( ) 0r t   for all time, 

then the error becomes equal to ( )y t . 

By using Matlab software, the frequency normalized pole 

locations for ITAE response for the buck-boost converter system 

which is a second order one, becomes
2 0.7071 0.7071j     . 

Then the value of   should be found in a way that places the 

poles to get the desired time domain response. In each iteration, 

the steady state error is used as a measurement metric and it 

should be kept 1% of the desired output voltage 24 V. 

The step response of the plant with the designed full state 

feedback controller is shown in Fig. 7. 

From the 0.24 V steady-state errors to the 1 V step disturbance in 

input voltage, it is obvious that the disturbance is rejected and this 

controller behaves very desirably in time-domain. Checking the 

root-locus diagram shown in Fig. 8 depicts that the system has 

become a stale and minimum phase system. Fig. 9 shows the 

frequency domain responses of the regulated system. 

Calculations bring out the gain margin as infinity and a phase 

margin of 69.1 degree, which are favourite frequency-domain 

response characteristics. Then, by applying the proposed 

controller the converter system becomes stable and regulated. 
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Figure 7. Step response of the controlled system via full state feedback 
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Figure 8. Root- locus diagram of ov d  after applying the designed 

feedback regulator 
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7. Conclusions 

In this paper, the application of signal flow graph technique and 

Mason gain formula for extracting associated transfer functions 

and modelling a buck-boost dc-dc converter is investigated. 

Transfer functions from input to output and control to output have 

been obtained. Employing the obtained functions, stability 

analysis and deciding about the controller design is performed. 

Finally, the efficiency of the state space feedback controller as a 

model based technique to design a proper control system is 

shown. The proposed control system employs the feedback 

controller with a special adjustment for proper setting of the 

control responses. 
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