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Abstract: In this work, we consider the symmetrization problem, that is the problem to obtain more accurate information about location 

of points based on a priori knowledge of their symmetries. Methods to solve the symmetrization problem with respect to vertical and 

inclined axes of reflectional symmetry are considered jointly with the more general symmetrization with respect to an indefinite 

reflection axis. Then the case of rotational symmetry is considered. The methods produce the minimal deformation that enhances 

approximate symmetries present in a given arrangement of points. 
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1. Introduction 

Symmetry is a central concept in many natural and man-made 

objects and plays a crucial role in visual perception, design and 

engineering. Several recent efforts in shape analysis have focused 

on detecting symmetries in 2-D and 3-D shapes [1]–[3]. 

Numerous applications have successfully utilized this type of 

information, e.g., for model reduction [3], scan completion [4], 

segmentation [5], shape matching [1], etc. In many cases low-

level symmetry analysis is based on investigations of so-called 

feature points, whose exact meaning depends on the resolving 

problem.  

One of the most common problems, where methods of 

“refinement by symmetry” can be efficiently used, is the 

biometrical identification, when the correct location of feature 

points is crucial. In particular, the accuracy of human face 

detection and recognition strongly depends on the measurement 

precision of pupils of eyes location [6]. Then the fact of near, but 

imperfect, reflective symmetry of human full-faces can be used to 

improve the accuracy [7]. In fact, usually methods of human face 

detection are based on the position analysis of several dozens 

feature points, which are either coupled in pairs, symmetric with 

respect to a vertical axis, or situated in the axis.  

In this work, we present several methods to obtain more accurate 

information about location of feature points, based on a priori 

knowledge of their symmetry. Note that positions of points in 

images are always known with some drift that depends on such 

factors as the image quality, noise levels in a vicinity of the 

points, the processing algorithm, and so on. As a result, evaluated 

coordinates could fail the symmetry conditions even for those 

points, which are in fact symmetric. So it is reasonable to use the 

information about symmetry to specify positions of feature 

points. Besides, the symmetrization itself should be done with 

minimal deformation of points positions that enhances 

approximate symmetries present in a given arrangement of 

points. The presented methods produce such optimal 

arrangements of feature points under reflectional and rotational 

symmetries. 

2. Symmetrization with Respect to a Vertical Axis 

Let  1,..., nP p p  be the set of all feature points given by their 

coordinates  ,k k kp x y . Assume that the reflection symmetry 

axis coincides with the coordinate axis Oy  and that the feature 

points are ordered in such a way that the points  1,...,R mP p p  

are in the right half-plane, the corresponding points 

 1 2,...,L m mP p p  are in the left half-plane, and the rest of 

points  2 1,...,O m nP p p  are situated in the axis Oy . 

The situation is illustrated by Fig. 1, whose left hand part 

demonstrates a set of feature points, the central part shows its 

partition into classes RP , LP , OP , and the right hand part shows 

the feature points after symmetrization. 

We associate with the ordered set P  the following 2n -

dimensional vector:  

   1 2 1 1, ,..., ,..., , ,...,
T

n n np p p x x y y X 
. 

Evidently, all such vectors form the vector space 2nR . Taking 

into account the partition into the classes RP , LP , OP , note that if 

the positions of all the feature points are precisely known, the 

following conditions must be satisfied: 

, 1,..., ;

, 1,..., ;

0, 2 1,..., .

i m i

i m i

i

x x i m

y y i m

x i m n





  

 

  
 

It is easy to check that the set of all vectors in 
2nR  under these 

conditions form an n -dimensional subspace 
2n

SymR R . 

Note that the “symmetrization” of a given arrangement P  of 

feature points means finding the vector s SymX R  that is the best 

approximation of X  by the Euclidean norm: 

arg min
Sym

s
Z R

X Z X


 
. 

Thus, sX  is the orthogonal projection of X  onto the subspace 
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SymR . 

To find the projection sX , let Q  be the projection matrix onto 

the subspace SymR , and let A  be a (2 )n n -matrix with SymR  as 

its column space, so that columns of A  form a basis for SymR . 

Then, since A  is a matrix with linearly independent columns, we 

know [8], that 
 

1
T TQ AA A A A A


 

, where A  is the 

pseudoinverse of A , and so sX QX . 

To complete the solution, note that 

2

0 0 0 0

0 0 0 0

0 0 0 0 0

m m

T

m m

n m

I I

A I I

I 

 
 

  
 
  , 

and so 
2

01 1

02 2
n

S
Q I

S

 
   

  , where S  is the following n n -

matrix: 

2

0 0

0 0

0 0

m

m

n m

I

S I

I 

 
 

  
 
  . 

Hence, for the vertical reflection axis the symmetrization can be 

easily performed by producing simple operations over 

coordinates of feature points. Namely, to symmetrize a pair of 

points i Rp P  and m i Lp P  , we need to take a pair of points 

with coordinates 

,
2 2

i m i i m i
x x y y 

  
  
  . 

To symmetrize a point from OP , we need to zeroize its x-

coordinate, and leave its y-coordinate without changes.

 

Fig.1. Symmetry with respect to the vertical axis Oy. 

 

3. Symmetrization with Respect to an Arbitrary Axis 

Now, let the reflection axis be defined by the equation y ax b 

, (where 0a  ), as it is shown in Fig. 2. Then the symmetrization 

problem can be solved by switching to a new coordinate system 

 O x y   . Namely, assume that the y -axis of the new system 

coincides with the reflection axis, the origin O  is in the point, 

where y -axis crosses Oy , and O x   is orthogonal with O y   in 

such a way that  O x y    is a “right-handed” system.  

Let ( , )x y  be coordinates of an arbitrary point in the “old” 

 Oxy -system, and let ( , )x y   be coordinates of the same point 

in the “new”  O x y   -system. Then  

cos ( )sin

sin ( )cos

x x y b

y x y b

 

 

   

    
, 

where the values of cos  and 
sin

 follow from the condition 
cot 0a   

, so that  

2

1
sin

1a
 

 ,      
2

cos
1

a

a
  

 . 

Just as above, we consider the vector  

  2

1 1,..., , ,...,
T n

n nX x x y y R 
, 

formed by coordinates of the feature points with respect to the 

“old”  Oxy -system, and the vector X   of coordinates of the 

same points with respect to  O x y   . These vectors are related by 

 X R X bK   , where (0,...,0,1,...,1)TK  , and 

cos sin

sin cos

n nT

n n

I I
R

I I

 

 

  
  

    . 
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Fig. 2. Symmetrization with respect to an arbitrary axis. 

It converts the symmetrization with respect to an arbitrary axis 

into the previously solved problem. Indeed, we may symmetrize 

X   in the same way, as it has been done in the previous section, 

and then return the symmetrized vector sX   back into the  Oxy -

system: 

  T T

s sX RX bK R QR X bK bK    
, 

or 

sX GX bHK 
, where 

TG RQR
 and 

TH I RQR 
. 

Now, it as an easy matter to work out that 

2

cos2 sin 21 1

sin 2 cos22 2
n

S S
G I

S S

 

 

   
   

   ; 

the expression for H  is similar. 

4. Symmetrization with Respect to an Unknown Axis 

Assume now, that the parameters a  and b  of a reflection 

symmetry axis are unknown, though the existence of such axis 

follows from the nature of the problem under solution. In this 

section we use the previously developed methods to determine 

the parameters in such a way that symmetrization could be 

achieved by the minimal deformation. For this we need the useful 

notations:  

(1 ... 11 ... 1)T

n n

 

, 

1

0 (1 ... 10 ... 0)T

n n

 

, 

0

1 (0 ... 01 ... 1)T

nn

 

. 

So let the reflection axis be defined by y ax b  , where 

cot 0a     and b  are undefined parameters. The 

corresponding optimization problem is 

 
2

0 , ,

1( ) minT Y bAY R X b    
, 

where AY Z  is the resulting vector of coordinates of 

symmetrized points. In other words, to achieve the optimal 

symmetrization we need to find the parameters  , b , and the 

minimizing vector Y .  

Let  , ,F Y b  be the expression under the minimization. Writing 

it in a matrix form and using the minimization criteria, we would 

get the following equations: 

 , ,
0

F Y b

Y




 ,   

 , ,
0

F Y b






 ,   

 , ,
0

F Y b

b




 . 

A series of appropriate calculations and transformations 

produce the system 

 

 

     

0

1

0

1

0 0 0

1 1 1

( ) ,

( )
0,

( ) .

T

T

T T

AY QR X b

dR
X b AY

d

R AY X b

 






   


 


 




   

The first (matrix) equation gives us the symmetrized vector in 

relation with   and b . The last two scalar equations can be used 

to find the parameters   and b  of the reflection axis.  

To write down the final solution, assume that the vector X  is 

partitioned into the “centralized” blocks 
 1 2 3 1 2 3

T T T T T TX x x x y y y

where i i avx x x e 
, i i avy y y e 

, 
1,2,3i 

, e  is the vector of 

1’s of an appropriate dimension, and 1

1 n

av i

i

x x
n 

 
    and    

1

1 n

av i

i

y y
n 

 
 are averages of x- and y-coordinates of the 

evaluated feature points. Then, after some tedious 

transformations of the last two equations of the system, the next 
result follows: 

1 2 2 1 3 3

1 1
1 2 1 2 3 3 3 32 2

( , ) ( , ) ( , )
tg2

( , ) ( , ) ( , ) ( , )

x y x y x y

x x y y x x y y


 


  
, 

cotav avb y x  
. 

Substitute the evaluated parameters   and b  into the first 

equation of the system, we can find the symmetrization AY Z  

of the original vector X . As the last step of the solution, the 

symmetrized vector should be transformed into the original “old” 

coordinate system.  

An example of symmetrization with an unknown axis is given in 

Fig. 3. Distorted feature points with respect to the original axis 

are shown in its upper right-hand part, while its lower left part 

shows the reconstructed axis and the result of symmetrization 

with respect to it. The two axes are compared in the lower right-

hand part of Fig. 3. 

5. Rotational Symmetrization of Feature Points 

Let 
 1 2 ...

T

np p p p
 be the vector of all feature points 

 
T

k k kp x y
, 

1,2,..., ,k n
. Assume that it is known a priori 

that this set of points is rotational symmetric and ordered in such 

a way that 1k kp R p 
 for all 

1,2,...,, 1k n 
, where 

R  is the 

rotation operator with the angle 2
n

   . In particular, 

1

1

k

kp R p


. Just as above, associate with p the following vector 

X,  

   1 2 1 1 2 2... ...
T T

n n np p p p x y x y x y X  
, 

and note that all such X fill the space 
2nR . Using matrices, the 

rotation symmetry condition can be written as 
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1 1

1 1

cos sin cos sin

sin cos sin cos

k k

k k

x x xk k

y y yk k

   

   





         
         
         

for all 1,2,..., 1k n  , or simultaneously for all points as 

1

2

1

( 1)

......

nn

Ip

Rp
X p

Rp





  
  
   
  
     

    , where 

cos sin

sin cos
R

 

 

 
  
   and 

k

k

k

x
p

y

 
  
  . 

The set of all such vectors X under this condition form a 2-

dimensional subspace SymR  in 2nR , spanned by columns of the 

matrix  

( 1)

...

n

I

R
A

R





 
 
 
 
 
 
   

 

Fig. 3. Example of symmetrization with an unknown axis. 

 

Now, assume that X  corresponds to the given arrangement of 

feature points, so that SymX R . The symmetrization means 

finding the vector SX  in SymR  that approximates X in the best 

way: arg min
Sym

S
Z R

X Z X


  . Just as for the case of reflectional 

symmetry, SX  is the orthogonal projection of X onto the 

subspace SymR , and so  
1

T T

SX A A A A X QX


  . 

1p

5p

4p

3p
2p

O

8p

7p6p

x

y




 

Fig. 4. Rotational symmetrization. 

To find the projection matrix  
1

T TQ A A A A


 , note that 

 ( 1) ( 1) ( 1)

( 1)

... ...
...

T T T T T

n n n

n

I

R
A A I R R I R R R R

R



     



  



 
 
     
 
 
 
 

. 

Since matrices of rotations are orthogonal, 
1T

k kR R 

  for all k , 

and so 
TA A nI . Thus,  

1 1T T TA A A A AA
n



 . Further,  

 ( 1)

( 1)

...
...

T T T

n

n

I

R
AA I R R

R



 







 
 
  
 
 
 
   

( 1)

( 1)

( 1) ( 1) ( 1) ( 1)

...

...

... ... ... ...

...

T T

n

T T

n

T T

n n n n

I R R

R R R R R

R R R R R

 

    

    





   

 
 
 

  
 
 
  . 

Taking into account that 
1T

k k k n kR R R R   



    , we obtain  
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 

( 1)

1 2

( 1) ( 2)

...

...1

... ... ...

...

n

T T

n n

I R R

R I R
A A A A

In

R R I

 

 

 





 

 
 
 
 
 
 
  . 

To understand meaning of the gained result, note that 

   

1

1
2

( 1)

( 1)

1
...

... ...

T T T T

S n

n n

I p

R p
X A A A A X I R R

n

R p



 









   
   
      
   
     

    

1 2 2 3 ( 1)

( 1)

1
...

...

T T T

n n

n

I

R
Ip R p R p R p

n

R



  







 
 
           
 
 
   

( 1)

1

( 1)

1

...

n
T

k k

k

n

I

R
R p

n

R













 
 
  
 
 
 
 



. 

The term 

1

( 1) ( 1)

T

k k k kR p R p 



 
 may be considered as coordinates 

of the point kp
 rotated with the angle 

( 1)k 
 clockwise and so 

situated in the vicinity of the point 1p
. Such “backward” 

rotations of 1 2, ,..., np p p
 would form a “cloud” of points around 

1p
. So the second factor in the expression for sX

 above may be 

considered as the “center of the cloud” with average coordinates. 

Multiplication by the block matrix produce the optimal rotational 
symmetrized arrangement of feature points. 

6. Conclusion 

The considered problem of symmetrization of characteristic 

points relative to the axial and rotational symmetry has numerous 

applications, since it is the simplest and most common type of 

symmetry.  

We have shown how to symmetrize feature points of an image 

with respect to vertical and inclined axes of reflectional 

symmetry and considered the more general symmetrization with 

respect to an indefinite reflection axis. Together with it the case 

of rotational symmetry is considered. It is worth to mention that 

all the methods produce the minimal deformation that enhances 

approximate symmetries present in a given arrangement of 

points. 

However, there are also other types of symmetry - dihedral, 

translational and others, that can be met in the tasks related to 

image processing. The particular interest is the symmetrization 

under affine distortions, which occur in most real developments. 

A rigorous mathematical solution of these problems may not be 

easy, but it will provide additional opportunities for high-quality 

image processing. 
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