
International Journal of Applied Methods in Electronics and Computers 13(3): 84-92, 2025 

 
 

 

INTERNATIONAL JOURNAL OF APPLIED METHODS IN 

ELECTRONICS AND COMPUTERS 
 

 
www.ijamec.org  

 

 

International 

Open Access 
 
 

 

 

Volume 13 
Issue 03 

 

September, 2025 

 

 

* Corresponding author. E-mail address: huseyinbulduk@kmu.edu.tr 

DOI: 10.58190/ijamec.2025.132 
 

 

Research Article 

A Hybrid Model Approach Based on Swin Transformer and EfficientNetV2 for 

Maize Variety Classification 

Huseyin BULDUK a,* , Kadir SABANCI a  

a Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Türkiye 
 

 

  ARTICLE INFO 
 ABSTRACT 

Article history: 

Received 07 August 2025 

Accepted 29 September 2025 

 In this study, two different deep learning-based models were proposed for the classification of the 

maize varieties Chulpi Cancha, Indurata, and Rugosa. In the first stage, a single model was 

developed using the Swin Transformer architecture with an attention mechanism. This model was 
then integrated with EfficientNetV2 to create a hybrid structure. The developed models were tested 

on a dataset consisting of 1050 images with a fixed background and high resolution. The Swin 

Transformer model produced successful results with 99.37% accuracy, while the hybrid model 

achieved 100% test accuracy, accurately classifying all samples. The findings demonstrate that the 
Swin Transformer and EfficientNetV2-based hybrid architectures offer high discrimination power 

and generalization capacity in image-based classification of maize varieties. Future studies are 

recommended to conduct additional tests using images taken under different environmental 

conditions and larger datasets encompassing a wider range of varieties. 
This is an open access article under the CC BY-SA 4.0 license. 

(https://creativecommons.org/licenses/by-sa/4.0/) 
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1. Introduction 

In recent years, AI in agriculture has made significant 

strides, particularly in early plant disease detection, yield 

prediction, and smart farming applications. For example, 

the review "Revolutionizing Agriculture" notes that image 

processing, machine learning (ML), and deep learning 

(DL) models are being used to detect leaf diseases in 

vegetables such as tomatoes, eggplants, and cucumbers, 

while realistic field applications using IoT sensors are 

becoming increasingly widespread [1]. Corn (Zea mays) is 

an important cereal grain species widely cultivated and 

utilized in various fields worldwide [2]. Besides being a 

staple food source in human nutrition, it is also widely 

used as animal feed and a raw material for many industrial 

products [3]. As the third most produced agricultural 

product worldwide after wheat and rice, corn is of strategic 

importance both in agricultural production processes and 

in the economy [3], [4], [5]. Accurately classifying corn 

and performing quality analyzes are crucial for the 

product's market value and commercialization. Depending 

on different environmental conditions, corn varieties with 

different characteristics are grown in various geographical 

regions [4], [6]. Therefore, classification processes are 

essential for critical agricultural applications such as crop 

monitoring, yield estimation, and determination of seed 

purity. Furthermore, such classification systems support 

the production of high-quality products and contribute to 

the more effective management of processes such as 

storage, processing, and pricing in the agricultural supply 

chain [3], [5], [7]. In a study conducted by Yang et al. [8], 

it was aimed to classify corn varieties using morphological 

and texture-based features obtained from visible and near-

infrared hyperspectral images. In this context, support 

vector machines (SVM) and partial least squares-

discriminant analysis (PLS-DA) models were applied, and 

over 96.3% classification accuracy was achieved with the 

SVM method. In another study conducted by Zhao et al. 

[9], classification was proposed by extracting 

morphological features such as colour, texture, and shape 

from images of corn seeds. In this direction, genetic 

algorithms and support vector machines were used 
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together, and an accuracy rate of 94.4% was achieved. In 

the study by Zhang et al. [10], a hyperspectral imaging 

method was utilized for the fast and non-destructive 

classification of four different corn seed varieties. Images 

obtained in the wavelength range of 450–979 nm were 

analyzed with different models such as deep convolutional 

neural network (DCNN), k nearest neighbors (k-NN), and 

SVM. The results obtained reveal that the DCNN model 

outperforms other methods and achieves a classification 

accuracy of 94.4%. 

In a study conducted by Velesaca et al. [11], corn 

kernels were classified into three categories: "good," 

"dirty," and "spoiled" using the Mask R-CNN algorithm. 

In this context, the Mask R-CNN method was compared 

with the VGG16 and ResNet50 models, and the average 

accuracy of the proposed deep learning-based approach 

was reported as 95.6%. Ni et al. [12] applied SVM, 

artificial neural network (ANN), principal component 

analysis (PCA), and ResNet architectures to analyze corn 

images obtained using a dual-camera system. According to 

the comparison results, the ResNet model showed the best 

performance with an accuracy rate of 98.2%. In another 

study developed by Javanmardi et al. [13], a deep learning-

based CNN approach was adopted to classify corn 

varieties. The features obtained with this model are as 

follows: The samples were classified using various 

machine learning algorithms such as cubic SVM, quadratic 

SVM, weighted k-nearest neighbors (kNN), boosted tree, 

bagged tree, and linear discriminant analysis (LDA). The 

findings revealed that the features extracted with deep 

learning provided higher accuracy compared to traditional 

methods. In this context, the CNN–ANN classifier stood 

out as the most successful method with an accuracy rate of 

98.1%. In the study conducted by Isik et al. [14], it was 

emphasized that seed purity is one of the main elements 

that increases agricultural yield, and in this direction, it 

was stated that the accurate classification of corn (maize) 

varieties is an important problem. Six different 

classification models were developed to solve this 

problem. A special dataset consisting of a total of 14,469 

images belonging to four classes was created for training 

the models. The images cover four different corn varieties: 

BT6470, CALIPOS, ES_ARMANDI, and HIVA, 

provided by BIOTEK. In the classification process, 

AlexNet and ResNet50 architectures were used with the 

transfer learning method. To improve model performance, 

these architectures were hybridized with Directional Long 

Short-Term Memory (LSTM) and Bidirectional Long 

Short-Term Memory (BiLSTM) algorithms. According to 

the results, the highest classification accuracy of 98.10% 

was obtained from the ResNet50 + BiLSTM hybrid model. 

In a study by Kiratiratanapruk et al. [15], a system for 

the detection of defects in corn seeds was developed by 

utilizing machine vision techniques. For this purpose, 

seeds were classified using a specially designed imaging 

device. According to the obtained results, defective seeds 

were identified with an accuracy rate of 80.6%, while 

healthy seeds were identified with an accuracy rate of 

95.6%. Zhao et al. [16] proposed an approach in which 

morphological features such as color, texture, and shape 

were extracted for the classification of corn seed types. In 

this context, the classification process was carried out by 

combining genetic algorithms (GA) and support vector 

machines (SVM), and an accuracy rate of 94.4% was 

achieved. In another study by Kai et al. [17], image 

processing techniques were used to detect corn leaf 

diseases. The color and texture features obtained from the 

images were classified using a backpropagation artificial 

neural network (BPNN), and an accuracy rate of over 98% 

was achieved. Yang et al. [18] analyzed hyperspectral 

image data to assess the quality of waxy maize seeds. Five 

morphological and eight texture features were extracted 

from the images, and these features were classified using 

support vector machines (SVM) and partial least squares 

discriminant analysis (PLS-DA). High classification 

success rates were achieved in the study, ranging from 

96.3% to 98.2%. Huang et al. [19] conducted a study 

aimed at determining seed purity and improving yield 

using hyperspectral images of four maize varieties 

produced in different years. The classification processes 

were carried out with the Least Squares Support Vector 

Machine (LSSVM) model, and an accuracy rate of 94.4% 

was achieved. Williams et al. [20] classified kernels of the 

same maize variety into three groups based on their 

hardness characteristics: hard, medium, and soft. The PLS-

DA method was used in the analysis of hyperspectral 

images, and the classification success rates ranged from 

85% to 96%. Wu et al. [21] compared five different 

classification algorithms with image processing 

techniques in their study on the determination of corn grain 

quality. These algorithms were determined as SVM, SVM-

grid search, SVM-genetic algorithm (GA), SVM-particle 

swarm optimization (PSO) and backpropagation artificial 

neural network (BPNN). The accuracy rates obtained were 

reported as 92.31%, 94.87%, 97.44%, 97.44% and 

92.31%, respectively. Daskalov et al. [22] designed an 

automatic inspection system for the detection of corn seeds 

damaged by Fusarium Moniliforme. In the study, which 

was carried out using images of corn varieties produced in 

Bulgaria, preprocessing, feature selection and 

classification steps were performed, and accuracy rates 

ranging from 91.6% to 92.8% were achieved with SVM 

and k-nearest neighbors (KNN) algorithms. Li et al. [23] 

developed a classification approach based on computer 

vision and machine learning techniques to identify various 

types of damaged corn kernels. A total of 17 features, 12 

colors and 5 shapes were extracted from the images, and 

classification accuracy was between 74.76% and 96.67% 

using these features. 

In a study conducted by Lopes et al. [24], a deep 
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learning-based computer vision system was developed for 

the classification of cocoa beans. This system used the 

ResNet18 architecture, and the model demonstrated high 

classification performance with an accuracy rate of 

96.82%. In another study conducted by Oliveira et al. [25], 

computer vision techniques were used in the classification 

of fermented cocoa beans. In this study, the effect of the 

number of samples per class on the classification 

performance was analyzed, and an accuracy rate of 92% 

was achieved. Lopes et al. [26] developed a computer 

vision-based approach for the classification of barley flour 

samples. In the study, the Spatial Pyramid Partition 

Ensemble method was used, considering 55 image 

features; the classification processes achieved 75% 

accuracy with the k-nearest neighbors (k-NN) algorithm 

and 100% accuracy with the J48 algorithm. Avuçlu et al. 

[2] proposed a hybrid model for the classification of three 

different maize cultivars of the Zea mays species. In this 

study, 12 different morphological features of corn kernels 

were extracted, and these data were classified using 

machine learning (ML) algorithms. In the standard 

classification process, test accuracy rates were 96.66% for 

Decision Tree (DT), 97.32% for Random Forest (RF), and 

96.66% for Naive Bayes (NB). The proposed hybrid model 

demonstrated that these rates reached 100% for all three 

algorithms. Statistical analyzes revealed that the overall 

accuracy was 97.67% for the standard classification and 

100% for the hybrid model. These results demonstrate the 

high efficiency of the developed hybrid corn classification 

system. Avuçlu et al. [27] used deep learning-based 

ResCNN, DAG-Net, and ResNet-18 models to classify 

three different corn varieties: Chulpi Cancha, Indurata, and 

Rugosa. Classifications were performed using 1050 corn 

images, each with a fixed background. The images were 

divided into three separate datasets: normal color images 

(Colour Images - CI), images generated with the Canny 

edge detection algorithm (CEDA), and images generated 

with the Sobel edge detection algorithm (SEDA). In 

classifications performed using normal color images (CI), 

the DAG-Net model achieved 100% accuracy for the 

Indurata variety. Accuracy rates for other corn varieties 

and models ranged from 99.33% to 99.52%. When images 

generated with Canny edge detection (CEDA) were used, 

the DAG-Net model achieved approximately 99.90% 

accuracy for the Indurata variety. Other models performed 

above 99% for the Chulpi Cancha and Rugosa varieties. In 

experiments conducted with Sobel edge detection 

(SEDA), the DAG-Net and ResNet-18 models achieved 

100% accuracy for the Indurata variety. Accuracy rates for 

all other models and corn variety combinations were 

generally recorded between 99.33% and 99.52%. One of 

the key findings of the study is that models trained on 

datasets generated with edge detection algorithms (CEDA 

and SEDA) took less time to train than models trained on 

regular color images. This significantly increases the 

efficiency of the classification process. 

Besides corn, various agricultural products have been 

classified using deep learning algorithms. For example, 

Sönmez et al. [28] classified wheat varieties and hybrids 

such as Ahmetbuğdayı, Cesare, BC1F6, and BC2F5 using 

color features. Approximately 99% accuracy has been 

achieved with machine learning algorithms such as 

artificial neural network (ANN), support vector machines 

(SVM), decision tree (DT), k-nearest neighbors (k-NN), 

and random forest (RF). It has also been shown that 

different wheat hybrids can be modelled based on color. 

Das and Rupa [29] performed disease classification on 

strawberry leaf images using ResNet architectures. The 

ResNet-50 model achieved 88% accuracy, the ResNet-101 

model 82% accuracy, and the ResNet-152 model 80% 

accuracy. Altan [30] classified diseases on pepper plant 

leaves using a Capsule Network (CapsNet) based artificial 

neural network model. The developed model achieved 

high success in detecting diseases affecting pepper 

production, achieving accuracies between 95% and 97%. 

Sun et al. [31] classified tomato leaf diseases with high 

accuracy by combining EfficientNetV2 and Swin 

Transformer architectures. The proposed model 

outperformed both individual models and previously 

proposed combined architectures with an accuracy rate of 

99.70%. Li et al. [32] classified potato leaf diseases (early 

and late mildew) with the Swin Transformer architecture 

and achieved 97.7% accuracy. Zhao et al. [33] classified 

fungal images belonging to 114 classes with a Swin 

Transformer-based model and achieved an accuracy rate 

of 87.66%. 

     The most significant innovation of this work is the 

first application of the Swin Transformer and 

EfficientNetV2 hybrid architectures to the classification of 

corn varieties. Studies on the classification of corn seeds 

in the literature have largely been limited to single CNNs 

or classical machine learning methods. The proposed 

hybrid model combines a Transformer-based global 

attention mechanism with CNN-based optimized 

convolutional filters to provide a more robust feature 

representation. In this respect, the study surpasses existing 

approaches in agricultural image classification and adds 

value to both academic literature and agricultural 

applications by achieving high accuracy, particularly in 

determining varietal purity. 

     In recent years, artificial intelligence-supported 

methods have been increasingly applied in agriculture. 

Deep learning and machine learning-based approaches are 

effectively used in early diagnosis of plant diseases [31], 

[32], crop yield estimation [6], smart irrigation systems, 

and agricultural robotics applications. These methods 

allow the development of highly accurate classification 

and decision support systems not only in laboratory 

conditions but also at the field level. The application of 

next-generation deep learning architectures, particularly 



Bulduk and Sabanci, International Journal of Applied Methods in Electronics and Computers 13(3): 84-92, 2025 

- 87 - 

 

Swin Transformer and EfficientNet, in agriculture offers 

significant advantages in accurate classification of crop 

varieties and quality control processes [27], [31]. In this 

context, the hybrid approach proposed in our study aligns 

with current trends in the literature and contributes to 

agricultural AI applications. 

2. MATERIAL AND METHODS 

2.1. Hardware and Software Environment 

The model's training, testing, and evaluation processes 

were implemented using a two-stage system architecture. 

Preliminary processing, dataset management, and model 

design were conducted on a Windows 10 PC with an Intel 

Core i7-13700 processor and 32 GB of RAM. To meet the 

high computational power requirements, the model's 

training and evaluation processes were performed on the 

GPU-accelerated Google Colab platform using an 

NVIDIA A100 graphics processing unit. The Python 

programming language was used in the software 

development process, and the PyTorch library was used to 

create deep learning models. Visualization of the obtained 

results was achieved using data visualization tools such as 

Matplotlib and Seaborn. 

2.2. Dataset 

The dataset used in this study consists of color images 

of three different corn varieties: Chulpi Cancha, Indurata, 

and Rugosa. These three varieties have morphologically 

distinguishable characteristics and are important in 

industrial and commercial applications. The dataset 

contains a total of 1050 images, with an equal number of 

examples for each class (350 images/class). All images 

were included in the system at a fixed resolution, high 

quality, and in RGB format. 

The dataset was divided into two groups: training (80%) 

and testing (20%). Basic data augmentation techniques 

were applied to the training data to ensure class balance 

and reduce the risk of overfitting. In this context, 

operations such as random rotation and horizontal and 

vertical flips were performed. Figure 1 presents sample 

images of Chulpi Cancha, Indurata, and Rugosa. 

 

Figure 1. Corn Varieties 

2.3. Deep Learning Models Used 

In this study, three different deep learning-based 

architectures were used to classify corn varieties: Swin 

Transformer and Swin Transformer + EfficientNetV2 

(hybrid model). The structural features of these models are 

summarized below. 

2.3.1. Swin Transformer 

Swin Transformer (Shifted Window Transformer) is a 

model designed to address some of the limitations of the 

Vision Transformer (ViT) architecture and to perform 

more efficiently, particularly on low-resolution images. 

Swin Transformer divides the input image into fixed-sized 

windows and applies the Multi-head Self-Attention 

(MSA) mechanism locally within these windows. This 

approach both reduces computational cost and enables 

more efficient learning of local visual details. Thanks to 

the Window-based Multi-head Self-Attention (W-MSA) 

and Shifted Window Multi-head Self-Attention (SW-

MSA) layers within Swin Transformer, the model can 

effectively capture both local and global context. These 

features significantly increase classification accuracy, 

especially in datasets with limited sample sizes. 

2.3.2. EfficientNetV2 

EfficientNetV2 is an improved version of the 

EfficientNet family of architectures and stands out as a 

faster-training, more parameter-efficient deep 

convolutional neural network (CNN) architecture. This 

model balances depth, width, and resolution parameters 

based on scalability. 

In this study, EfficientNetV2 is integrated with the Swin 

Transformer in a hybrid architecture based on the feature 

fusion method. This integration aims to increase 

classification accuracy by supporting the Swin 

Transformer's attention mechanism with the powerful 

feature extraction capabilities of EfficientNetV2. 

2.3.3. Swin Transformer – EfficentNetV2 Hybrid Model 

In this study, a hybrid deep learning architecture was 

developed to leverage the complementary feature 
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extraction capabilities of the Swin Transformer and 

EfficientNetV2 models. Both models were used with 

pretrained versions, and feature extraction was performed 

using only the backbone layers, removing the final 

classification layers. The 

"swin_tiny_patch4_window7_224" architecture was 

chosen as the Swin Transformer component, and the head 

layer at the end of the model was replaced with 

nn.Identity(). This resulted in a 768-dimensional feature 

vector extracted solely from the transformer-based 

backbone layers. On the EfficientNetV2 side, the 

"efficientnetv2_rw_s" variant was used, removing the 

classifier layer and preserving only the backbone layers. A 

1280-dimensional feature vector was extracted from this 

model. These two vectors obtained from both models were 

concatenated in a feedforward step, creating a combined 

feature representation with a total dimension of 2048. This 

combined vector was fed to a single-layer fully connected 

classifier (linear layer), performing a three-class 

classification (Chulpi Cancha, Indurata, Rugosa). Thus, 

the structural information captured by the Swin 

Transformer's global attention mechanism was 

complemented by low- and mid-level visual information 

extracted by EfficientNetV2's optimized convolutional 

filters, resulting in a richer feature representation. This 

technical structure increased the model's generalization 

capacity and positively contributed to classification 

accuracy. 

2.4. Model Training and Evaluation 

All models were trained using the same training and test 

datasets, and comparative analyzes were conducted 

accordingly. Hyperparameters were kept constant 

throughout the training process; training was conducted 

for 5 epochs, the mini-batch size was set to 16, and the 

learning rate was set to 1:4. The Adam algorithm was used 

in the optimization process, and a cross-entropy loss 

function was used appropriate to the classification task. 

Additionally, various data augmentation techniques were 

applied to the training data to improve the generalization 

ability of the model. In this context, the training set was 

diversified using Random Horizontal Flip, Random 

Rotation, and ColorJitter, which simulates color 

variations. Table 1 shows the training parameters of the 

models. Figure 2 shows the flowchart of the study. 

Table 1. Training Hyperparameters of the Model 

Hyperparameter Swin 

Transformer 

EfficentNetV2 Hybrid Model 

(Swin + 

EfficientNetV2 

Input image 

size 

224 × 224 224 × 224 224 × 224 

Batch size 16 16 16 

Epochs 5 5 5 

Optimizer Adam Adam Adam 

Initial learning 

rate 

1e-4 1e-4 1e-4 

Learning rate 

schedule 

StepLR 

(gamma=0.1, 

step=3) 

StepLR (same) 
StepLR 

(same) 

Loss function Cross-

Entropy 
Cross-Entropy 

Cross-

Entropy 

Weight decay 1e-5 1e-5 1e-5 

Data 

augmentation 

Random 

Rotation, 

Flip, 

ColorJitter 

Same Same 

Pretrained 

weights 
ImageNet-

1K 
ImageNet-1K 

Both 

pretrained 

backbones 

 

Figure 2. Flowchart of the Study 

3. RESULTS AND DISCUSSION 

3.1. Findings of the Swin Transformer Model 

The Swin Transformer model demonstrated very 

successful performance in classifying the varieties Chulpi 

Cancha, Indurata, and Rugosa of the Zea mays species. 
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The 99.37% accuracy rate achieved on the test dataset 

demonstrates the model's high generalization capacity. 

Figure 3 shows the confusion matrix of the Swin 

Transformer model. 

The confusion matrix, where the model misclassified 

only one of the 158 test samples, demonstrates that the 

Swin Transformer is capable of learning to distinguish 

between classes at a very high level. The presence of near-

zero values in the out-of-class cells in each row 

demonstrates that the separation between classes is 

significant. 

 

Figure 3. Swin Transformer Model Confusion Matrix 

The model's lowest performance occurred when a single 

sample from the Rugosa class was confused with Chulpi 

Cancha. However, this error did not significantly affect the 

overall success rate of 99.37%. Furthermore, the fact that 

the error was only one-way (Rugosa → Chulpi Cancha) 

demonstrates that the model does not exhibit any 

systematic bias. 

The confusion matrix is consistent with the findings in 

the classification report and visually supports the Swin 

Transformer model's high recall and precision values. In 

this context, it clearly demonstrates that the Swin 

Transformer model is an effective method that provides 

high accuracy, stability, and reliability in the classification 

of maize species. 

To address the concern that the near-perfect accuracy 

might result from overfitting, additional performance 

metrics were examined. As shown in the classification 

report, precision, recall, and F1-scores for all three classes 

range between 0.98 and 1.00, indicating highly consistent 

results. Furthermore, both macro and weighted averages 

reach 0.99, confirming that the model performs uniformly 

across all classes rather than overfitting to a particular 

subset. Therefore, the high accuracy observed is 

attributable to the model’s effective learning capability 

rather than overfitting. 

3.2. Findings of the Swin Transformer + EfficientNetV2 
Hybrid Model 

The model, which utilizes a hybrid of Swin Transformer 

and EfficientNetV2, demonstrated high success in 

classifying Chulpi Cancha, Indurata, and Rugosa varieties 

of the Zea mays species. The 100% accuracy rate achieved 

on the test data demonstrates the model's high level of 

generalization capacity. 

The results confirm that the Swin Transformer model 

provides high accuracy in classifying corn varieties; 

however, they also reveal that the hybrid version with 

EfficientNetV2 distinguishes between classes more 

effectively, increasing the accuracy rate to 100%. In this 

context, it can be said that the proposed hybrid model 

stands out with its superior learning capacity and strong 

generalization ability in agricultural image classification 

problems.  

The confusion matrix of the Swin Transformer + 

EfficientNetV2 hybrid model demonstrates the strong 

synergy achieved by combining these two architectures. 

Swin Transformer's attention-based global and local 

information extraction capability, combined with 

EfficientNetV2's optimized convolutional feature 

extraction, enabled complete and consistent learning of 

distinguishing features between classes. 

While the previous confusion matrix obtained with the 

Swin Transformer model exhibited a classification error in 

a single example of the Rugosa class, this error is 

eliminated in this hybrid model. This demonstrates that the 

hybrid structure significantly enhances generalization 

ability. 

Figure 4 presents the confusion matrix of the hybrid 

model. 

 

Figure 4. Swin Transformer - EfficientNetV2 Hybrid Model 
Mixed Matrix 

The ROC curve and AUC values presented in Figure 5 

are one of the strongest indicators supporting the 

classification performance of the Swin Transformer + 

EfficientNetV2 hybrid model. 

The results clearly demonstrate that the Swin 
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Transformer and EfficientNetV2 architectures, when 

working together, provide a powerful complementary 

learning mechanism. Swin Transformer effectively learns 

global and local relationships thanks to its self-attention-

based structure, while EfficientNetV2 provides efficient 

and detailed feature extraction with its depth, width, and 

resolution scaling advantages. Thanks to this hybrid 

structure, the developed model not only demonstrated high 

discrimination accuracy between classes but also 

demonstrated reliable and stable classifier performance, 

with no class interfering with the others. 

 

Figure 5. Swin Transformer - EfficientNetV2 Hybrid Model 
ROC Curve 

Table 2 presents a comparison of the results of our study 

with the methods and accuracy rates reported in similar 

studies in the literature. 

Table 2. Comparison of the proposed hybrid method with 
previous studies. 

Study Method Accuracy (%) 

Avuclu et al. [3] Morphological Features + 

ML Hybrid 

100 

Lopes et al. [26] J48 100 

Avuclu et al. 

[27] 

ResCNN, DAG-Net, 

ResNet18 

100 

Isik et al. [14] ResNet50+BiLSTM 98.1 

Ni et al. [12] ResNet 98.2 

Javanmardi et al. 

[13] 

CNN-ANN 98.1 

Yang et al. [8] SVM + PLS-DA 98.2 

Wu et al. [21] SVM-GA 97.44 

Yang et al. [18] SVM 96.3 

Lopes et al. [24] ResNet18 96.82 

Our Study Swin Transformer 99.37 

Our Study 

(Hybrid) 

Swin + EfficientNetV2 100 

3.3. Discussion 

In this study, deep learning-based models were 

comparatively evaluated for the classification of Chulpi 

Cancha, Indurata, and Rugosa varieties of the Zea mays 

species. Among the implemented models, Swin 

Transformer, thanks to its attention-based architecture, 

achieved high accuracy in class discrimination. This 

model, which achieved 99.37% test accuracy, made an 

error in only one instance; specifically, while achieving 

100% accuracy for the Indurata class, it classified a single 

instance of the Rugosa class as Chulpi Cancha. This result 

demonstrates that the Swin Transformer model is largely 

capable of learning subtle morphological differences 

between classes, but that class confusion can occur in some 

limited cases. 

A model obtained by hybridizing Swin Transformer 

with the EfficientNetV2 architecture took classification 

performance one step further, achieving 100% test 

accuracy. The hybrid model accurately classified all test 

instances from all three classes, demonstrating high levels 

of both generalization and discriminative feature 

extraction. The combination of Swin Transformer's 

attention mechanism and EfficientNetV2's optimized 

convolutional structure increased the model's 

representational power at both local and global levels, 

enabling it to more clearly distinguish differences between 

morphologically similar classes. This study was the first to 

test Swin Transformer and EfficientNetV2 in the 

classification of hybrid maize varieties, achieving 100% 

accuracy. 

The ROC curves for the Swin + EfficientNetV2 hybrid 

model showed an AUC value of 1.00 for each class. This 

demonstrates that the model not only provides high 

accuracy but also clearly distinguishes all classes with high 

confidence. This result supports the claim that deep 

learning-based hybrid model approaches provide effective 

and reliable solutions to agricultural classification 

problems. 

When the findings obtained in this study are compared 

with similar approaches in the literature, it is seen that the 

proposed hybrid model provides a significant superiority. 

For example, Zhang et al. [10] achieved 94.4% accuracy 

with a CNN-based model on hyperspectral images, Ni et 

al. [12] reported 98.2% accuracy with a ResNet-based 

model, and Avuçlu and Köklü [27] reached up to 99.52% 

accuracy using DAG-Net and ResNet-18. The Swin 

Transformer + EfficientNetV2 hybrid model proposed in 

our study achieved 100% classification accuracy on all test 

samples. This result demonstrates that the hybrid approach 

not only increases classification accuracy but also 

maximizes inter-class discrimination by reaching a value 

of 1.00 for each class in the ROC-AUC analysis. Thus, it 

is confirmed that our model offers stronger generalization 

capacity beyond the methods reported in the existing 

literature. 

Another important aspect to consider is the 

computational cost of the proposed models. While the 

experiments in this study were conducted using high-

performance hardware (NVIDIA A100 GPU), real-world 

agricultural applications often rely on resource-

constrained platforms such as mobile devices, embedded 

systems, or field robots. Therefore, future research should 
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focus on optimizing the proposed hybrid architecture for 

lightweight deployment. Approaches such as model 

pruning, quantization, knowledge distillation, and the use 

of efficient backbone networks (e.g., MobileNetV3 or 

ShuffleNet) can significantly reduce memory and power 

consumption. This would enable the integration of the 

developed system into portable or edge-computing 

platforms, making it more practical for real-time field 

applications in precision agriculture. 

The findings are not limited to the classification of corn 

varieties but also have a broader impact on agricultural AI 

applications. It appears that deep learning-based hybrid 

models can be successfully used in critical tasks such as 

disease detection, quality control, and yield estimation in 

various crops. In this regard, the hybrid Swin Transformer 

+ EfficientNetV2 model proposed in our study has an 

adaptable structure for different agricultural data types 

(e.g., leaf images, hyperspectral data, or drone-based field 

imagery). Thus, the high accuracy achieved not only 

contributes to variety classification but also to the 

development of decision support systems in agricultural 

production and the dissemination of smart agricultural 

technologies. 

4. CONCLUSIONS 

This study demonstrated that deep learning-based 

hybrid models can achieve highly accurate classification 

of maize varieties. The Swin Transformer model alone 

reached 99.37% accuracy, while the proposed Swin 

Transformer + EfficientNetV2 hybrid achieved 100% 

accuracy by correctly classifying all test samples. 

Beyond academic contributions, these findings have 

clear real-world implications. The proposed hybrid model 

can support critical agricultural processes such as seed 

purity assessment, quality control, and automated 

decision-making in precision farming. With optimization 

techniques (e.g., model compression, quantization, 

knowledge distillation), the model can be deployed on 

mobile devices, embedded systems, or agricultural robots, 

enabling real-time field applications. 

Overall, the results highlight the potential of integrating 

next-generation attention-based architectures with 

optimized CNNs to develop lightweight, robust, and 

practical solutions for agricultural data analysis. Future 

work should expand the model to additional maize 

varieties and different data types (e.g., field images, 

hyperspectral data) to further validate scalability and 

adaptability. 
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