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 This study aims to estimate the number of people in a room using data from temperature sensors 

placed in a room. The study utilizes an open-source dataset comprising time-dependent 

temperature sensor data. The days when the number of people in the dataset was always zero were 

removed to avoid misleadingly increasing the success of the model, and the number of data points 

was reduced by averaging every 10 measurements. The temperature data were converted into RGB 

images of 28 x 28 pixels, and the measurements from each sensor were assigned to a different 

region in the image. A convolutional neural network model was trained by dividing these images 

into training, validation, and test sets. The model was able to predict the no-person and low-person 

classes with high accuracy. However, at higher headcounts, the model’s performance degraded. In 

particular, prediction errors increased in transition situations where the number of people changes 

rapidly. The accuracy of the model on the test dataset is obtained as 93.33%. The results show that 

temperature data can be effectively used to predict occupancy levels. This study lays a foundation 

for headcount prediction based on temperature data and offers significant potential in applications 

such as smart building systems. 
This is an open access article under the CC BY-SA 4.0 license. 

(https://creativecommons.org/licenses/by-sa/4.0/) 
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1. Introduction 

Occupancy detection is the process of determining the 

presence of people within a building or a specific area. 

This process can range from simply understanding 

whether a space is occupied or unoccupied to estimating 

the number of people present [1], [2]. The importance of 

occupancy detection stems from the fact that it plays an 

important role in the energy performance of buildings and 

users’ perception of the indoor environment. People are 

one of the main drivers of energy use in buildings and also 

one of the leading causes of the gap between the expected 

and actual performance of buildings. Therefore, it is vital 

to optimize building operations based on actual or 

estimated occupancy [3]. 

Literature has shown that an average of 23% energy 

savings can be achieved when using occupancy-based 

demand-side heating, ventilation, and air conditioning 

(HVAC) systems. Energy-saving potential can vary 

depending on site characteristics, utility, and occupant 

behavior. Energy-saving potentials can be estimated by 

matching occupancy information with building energy 

simulations [3]. 

The benefits of occupancy detection are not limited to 

energy savings [4]. It also plays a critical role in optimizing 

resource allocation, security measures, and user-centric 

services. Accurate occupancy prediction improves energy 

efficiency by ensuring that building systems such as 

lighting, heating, and ventilation are operated only when 

needed[5]. This reduces operating costs and environmental 

impact. Occupancy information can also be valuable for 

building security systems, for example, to detect 

unauthorized entry or to determine the number of people 

inside a building during emergencies. In terms of occupant 

comfort, automatically adjusting systems to people’s 

presence and preferences provides a better indoor 

experience[6]. 

Various sensors and hardware are used for occupancy 
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detection [3]. A review of the literature reveals that various 

combinations of features have been explored. The most 

commonly used features are temperature, followed by 

CO2 concentration, relative humidity, light and sound 

pressure. In addition, motion sensors [7], infrared array 

sensors [8], cameras, Wi-Fi routers [9], Bluetooth low-

energy devices, ultra-wideband radar [10], and even 

electricity meters [11] are among the technologies used for 

occupancy detection. 

Artificial intelligence (AI) and machine learning (ML) 

algorithms play an important role in occupancy detection 

[2]. Thanks to their ability to model complex relationships 

of data from various sensors and make accurate 

predictions, ML techniques have significantly improved 

the accuracy and efficiency of occupancy detection 

systems. In the literature, numerous machine learning 

(ML) algorithms have been evaluated for occupancy 

detection. Support Vector Machines, Artificial Neural 

Networks, Hidden Markov Models, Decision Trees, 

Random Forests, Gradient Boosting Machines, K-nearest 

Neighbor, Convolutional Neural Networks, and Long 

Short-Term Memory Networks are some of them. Studies 

show that high accuracy rates can be achieved primarily 

by using various sensor combinations and ML algorithms 

[1], [2], [4], [12], [13].  

In this study, a deep neural network model was created 

using data from four temperature sensors placed in specific 

regions of a room to classify the number of occupants. 

Unlike many previous studies that rely on multiple sensor 

types or complex sensor networks, the main motivation of 

this research is to investigate whether accurate occupancy 

detection and classification can be achieved using only 

temperature data, which is both cost-effective and easy to 

implement. This approach offers a novel contribution to 

the literature by demonstrating that a simplified sensor 

setup can still yield high prediction accuracy, potentially 

lowering the barriers to practical adoption in real-world 

building environments. By focusing solely on temperature 

sensors, this study provides new insights into the 

feasibility of minimalistic and scalable occupancy 

detection solutions, which can facilitate broader 

applications in energy management and smart building 

systems. 

2. Material and Methods 

2.1. Dataset Description 

This study uses the dataset created by A. Singh et al. [2]. 

This dataset is collected through a wireless sensor network 

to estimate the number of people in a room. This network 

consists of seven low-cost sensor nodes configured in a 

star topology, and the sensors are deployed in an office 

environment of approximately 24 square meters. During 

data collection, measurements were taken from CO2, 

temperature, light, sound, and motion sensors. The dataset 

contains a total of 10129 samples collected on seven 

different days. The number of occupants in the room is 

given between 0 and 3. The dataset used is available as 

open source from the UC Irvine Machine Learning 

Repository [14]. 

The temperature sensor data at four different points in 

this dataset, which are the subject of our study, were 

collected, and data from other sensors were not included 

in the study. The location of the temperature sensors in the 

room is shown in Figure 1.  

 

Figure 1. Sensor placement in the room (reproduced from [2]). 

2.2. Data Preprocessing 

The dataset used in this study consists of time-

dependent measurements from temperature sensors in a 

room. The dataset covers a total of seven days of 

measurements and contains a data record every 30 

seconds. However, for four days in the dataset, the number 

of people was always recorded as zero because there was 

no one in the room. Since this could misleadingly 

overestimate the success of the model, the data for these 

days were excluded from the analysis. As a result of this 

process, the total number of samples was reduced, yielding 

a more balanced dataset. 

The data recorded for every 30 seconds in the dataset 

was resampled to reduce the number of data points and 

optimize the processing time. During this process, the 

dataset was reduced by a factor of 10 by averaging every 

10 data points. However, it should be noted that the time 

intervals were not precisely equal during this process. As 

a result of the resampling process, the total number of 

samples was reduced to 525. Figure 2 shows the data for 

one day and one temperature sensor before and after the 

reduction process. 
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Figure 2. Original and resampled sensor data 

The temperature data was converted into RGB images 

to be used as input data for the model. During this process, 

the temperature values were normalized to a range of 24-

30°C and scaled to 0-1. The normalized temperature 

values were used to create images with a size of 28x28 

pixels. The measurements from four different temperature 

sensors in the dataset were assigned to four different 

regions on the image. Each sensor represents an area of 14 

x 14 pixels in the 28 x 28 pixel image. The “jet” color map 

was used for color coding in the creation of the images. 

This color map made the temperature values visually more 

easily distinguishable. Sample images obtained as a result 

of the transformation are given in Figure 3. 

 

Figure 3. Image generating process. 

Finally, the generated images were divided into training, 

validation, and test sets. The dataset was randomly divided 

into 60% training, 20% validation, and 20% testing. This 

was done to evaluate the performance of the model and to 

test its generalization ability. The statistical information of 

the groups obtained after the division process is given in 

Table 1. 

Table 1. The statistical information about the Train, Validation 
and Test sets. 

 

Coun

t Sensor-1 
Avg±Std 

Sensor-2 
Avg±Std 

Sensor-3 
Avg±Std 

Sensor-4 
Avg±Std 

Train 

315 25.63±0.4

0 

25.80±0.7

5 

25.24±0.4

8 

25.87±0.3

6 

Validatio
n 

105 25.65±0.3
6 

25.79±0.5
8 

25.26±0.4
1 

25.90±0.3
3 

Test 

105 25.64±0.3

8 

25.82±0.7

0 

25.27±0.4

7 

25.86±0.3

4 

 

2.3. Model Architecture 

In this study, a Deep Convolutional Neural Network 

model is used to predict the number of people in a room. 

The CNN model is widely used in classification problems 

due to its ability to extract features and learn complex 

patterns from image data automatically [15], [16], [17]. 

The architecture of the model consists of an input layer, 

convolutional layers, pooling layers, fully connected 

layers, and a classification layer. The block diagram of the 

model used is given in Figure 4. 

 

 

Figure 4. Model Architecture 

The input layer of the model is designed to receive 

images with a size of 28 x 28 pixels and three color 

channels (RGB). This layer passes the image data to the 

other layers of the model. 

There are three convolution layers in the model. Each 

convolution layer uses filters of size 3x3 and maintains the 

input size with “same” padding. The first convolution 

layer has 16 filters, the second convolution layer has 32 

filters, and the third convolution layer has 64 filters. The 

convolution layers are used to learn local features in the 

image. A Batch Normalization layer and the ReLU 

activation function follow each convolution layer. Batch 

Normalization helps to train the model in a faster and more 

stable way, while the ReLU activation function adds a non-

linear structure, allowing the model to learn more complex 

patterns. After the convolution layers, we used max 

pooling layers. Max pooling layers help the model learn 

more general features and reduce computational cost by 

reducing the size of the feature maps. After the first two 

convolution layers, max-pooling layers of size 2x2 and 

stride two are used. 

At the end of the model, there is a fully connected layer. 

This layer performs the classification process by 

combining the features obtained from the convolution and 

pooling layers. The fully connected layer has as many 

neurons as the number of classes. In this study, the number 

of classes represents the different categories of person 

counts in the dataset. After the fully connected layer, the 

softmax activation function is used to obtain the 

probability values for each class. The number of trainable 
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parameters in the model is 36356. 

Finally, the classification layer, which is the output 

layer of the model, determines to which class the input 

image belongs by using the probability values obtained 

from the softmax layer. 

2.4. Training Process 

The training of the model was performed on a dataset 

created to predict the number of people in a room. During 

the training process, various methods and hyperparameters 

were employed to optimize the model’s parameters and 

enhance its generalization ability. To evaluate the model’s 

performance and test its generalization ability, the dataset 

was divided into three groups: a training set (60%), a 

validation set (20%), and a test set (20%). The training set 

is used during the model’s learning process, while the 

validation set is used to monitor the model’s performance 

during training and to mitigate the risk of overfitting. The 

test set is reserved for evaluating the overall performance 

of the model after training is completed. 

The Adam optimization algorithm was used to train the 

model. Adam provides a faster and more stable learning 

process by dynamically adjusting the learning rate. The 

initial learning rate was set to 0.001, which yielded a stable 

speed during model parameter optimization. The 

maximum number of epochs was set to 100, but thanks to 

the early stopping mechanism, the training process was 

terminated early when the validation loss did not improve. 

The mini-batch size was set to 128, and 128 images were 

fed to the model during each iteration. The training process 

was carried out by optimizing the model on the data in the 

training set. The model’s performance was evaluated on 

the validation set at the end of each epoch. The validation 

loss was used as a metric to monitor the generalization 

ability of the model. If the validation loss did not improve 

for a certain period, the early stopping mechanism was 

activated, and the training process was terminated. This 

method prevented the model from overfitting and 

increased its generalization ability. 

 

2.5. Performance Metrics 

The performance of the model is evaluated on the test 

dataset using various metrics to analyze its success in 

detail in predicting the number of people in a room. 

Among them, the confusion matrix is used to visualize the 

classification performance of the model and analyze the 

correct and incorrect predictions for each class; it presents 

in tabular form the relationship between the actual classes 

and the classes predicted by the model and allows 

examination in detail in which classes the model is more 

successful and in which classes it makes mistakes. 

Accuracy refers to the proportion of instances correctly 

predicted by the model to the total number of instances in 

the test dataset and is used as a key measure to evaluate the 

overall performance of the model. The F1 score is the 

harmonic mean of the model’s precision and recall and is 

important for evaluating the model’s performance on 

unbalanced datasets. It measures the model’s ability to 

make correct positive predictions and its success in 

minimizing false negative predictions. Sensitivity refers to 

the rate at which the model correctly predicts true positive 

instances and measures how well the model can detect 

instances belonging to a class. Specificity refers to the rate 

at which the model correctly predicts true negative 

instances and measures the model’s success in correctly 

excluding instances that do not belong to a class. 

3. Results and Discussion 

In this study, the performance of a deep learning model 

developed to predict the number of people in a room is 

evaluated using metrics such as sensitivity, specificity, and 

F1 score on training, validation, and test datasets. Figure 5 

shows the confusion matrices obtained as a result of 

classification, and Table 2 shows the performance metrics 

for each dataset. 

 

 

   
(a) (b) (c) 

Figure 5. Confusion Matrices for Training, Validation, and Test Datasets 
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Table 2. Model Performance Metrics: Sensitivity, Specificity, 
and F1 Score Values on Training, Validation, and Test Datasets. 
All values are given in percentages. 

Set Metric 

CLASS 

Occupancy 
Level-0 

Occupancy 
Level-1 

Occupancy 
Level-2 

Occupan
cy 

Level-3 

T
ra

in
 Sensitivity 99.00 92.86 63.83 75.00 

Specificity 85.22 98.95 97.76 98.18 

F1 Score 95.42 91.23 72.29 80.00 

Accuracy 90.16 

V
al

id
at

i

o
n
 

Sensitivity 91.04 70.00 66.67 64.29 

Specificity 79.49 94.79 96.70 96.74 

F1 Score 89.71 63.64 71.43 69.23 

Accuracy 82.86 

T
es

t 

Sensitivity 100 88.89 75.00 84.62 

Specificity 94.74 100 100 94.57 

F1 Score 98.53 94.12 85.71 75.86 

Accuracy 93.33 

The training set results show that the model performs 

well in the learning process. In particular, the sensitivity is 

99%, the specificity is 85.22%, and the F1 score is 95.42% 

for the Occupancy Level-0 class, which represents 

situations where no person is present. This indicates that 

the model’s ability to detect unoccupied situations 

accurately is quite strong. Similarly, the sensitivity was 

92.86%, the specificity was 98.95%, and the F1 score was 

91.23% for the Occupancy Level-1 class, which represents 

a low number of people. However, in Occupancy Level-2 

and Occupancy Level-3 classes with higher person counts, 

the sensitivity remained at lower levels of 63.83% and 

75.00%, respectively. This indicates that the model 

struggles in the learning process at higher person counts 

and needs further improvement for these classes. 

The validation set results were used to evaluate the 

generalization ability of the model. For the Occupancy 

Level-0 class, the sensitivity was 91.04%, the specificity 

was 79.49%, and the F1 score was 89.71%. This indicates 

that the model can accurately detect non-person cases in 

the validation set. However, in the Occupancy Level-1 

class, which represents a low number of people, the 

sensitivity was 70.00%, and the F1 score was 63.64%. In 

Occupancy Level-2 and Occupancy Level-3 classes, 

which have higher person counts, the sensitivity is 

calculated as 66.67% and 64.29%, respectively. These 

results show that the model struggles in the validation set 

at higher person counts, and its generalization ability is 

limited. However, the high specificity values for all classes 

indicate that the model has a low tendency to make false 

positive predictions and can discriminate well between 

classes. 

The test set results were used to evaluate the 

performance of the model on real-world data. For the 

Occupancy Level-0 class, the sensitivity was 100%, the 

specificity was 94.74%, and the F1 score was 98.53%. 

This shows that the model perfectly detects situations 

where no person is present in the test set. For the 

Occupancy Level-1 class, which represents a low number 

of people, the sensitivity is 88.89%, the specificity is 

100%, and the F1 score is 94.12%. However, for 

Occupancy Level-2 and Occupancy Level-3 classes with 

higher person counts, the sensitivity was 75.00% and 

84.62%, respectively. This shows that the performance of 

the model decreases in the test set at higher person counts. 

F1 scores are calculated as 85.71% and 75.86% for these 

classes, respectively. 

In general, the model is quite successful in detecting no-

person cases and low-person count classes, but the 

performance decreases at higher person counts. This may 

be due to the class imbalance in the dataset. In particular, 

the availability of less data for higher person counts may 

have limited the model’s ability to learn these classes. The 

decrease in sensitivity and F1 scores indicates that the 

model has an increased tendency to make false negative 

predictions at higher person counts. However, the 

specificity values are generally high, suggesting that the 

model has a low tendency to make false positive 

predictions and can discriminate well between classes. 

Figure 6 shows the predicted and actual people count for 

each day. When the forecasting performance of the model 

is analyzed on a day-by-day basis, it is observed that the 

model can accurately capture general trends, but the 

forecast errors increase in cases of sudden changes. While 

the model’s predictions are quite close to the actual values 

in periods when the number of people is constant, 

deviations in the model’s predictions occur in transition 

situations where the number of people increases or 

decreases rapidly. In particular, the performance of the 

model was quite high when there were no people, and 

generally, successful predictions were made at low 

headcounts. However, at higher numbers of people, a 

significant drop in the model’s prediction accuracy was 

observed. This suggests that the model’s ability to learn 

transition situations is limited.  
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(a) 

 
(b) 

 
(c) 

Figure 6. Graphical representation of predicted and actual 
number of people for each day 

As a result, the model seems to be successful in the task 

of predicting the number of people, but additional 

improvements are needed to improve performance in 

situations with sudden changes. The results show that 

temperature data can be used to predict the number of 

people. However, the dataset needs to be expanded, and 

the class imbalance needs to be addressed to improve the 

performance of the model at high headcounts. In the 

future, the generalization capability of the model can be 

more thoroughly evaluated by testing in different rooms 

and with a larger number of sensors. 

4. Conclusions 

In this study, a deep learning model was developed to 

predict the number of people in a room using data from 

temperature sensors in a room. The model performed well 

on the task of predicting the number of people using only 

temperature data, achieving an accuracy of 93.33% on the 

test set. Evaluations on training, validation, and test 

datasets showed that the model was able to detect no-

person situations and low-person count classes accurately. 

However, at higher person counts, a significant drop in the 

model’s performance was observed. This may be due to 

the class imbalance in the dataset and the limited 

availability of data for high-headcount classes. 

Day-by-day analyses reveal that the model accurately 

captures general trends, but the prediction errors increase 

in transitional situations when the headcount changes 

rapidly. In particular, while the model’s predictions were 

quite close to the actual values in periods when the number 

of people was constant, there were deviations in the 

model’s performance when there were sudden changes. 

The results of this study show that temperature data can 

be used to predict headcount and that such an approach has 

significant potential for energy savings and resource 

management in applications such as smart building 

systems. However, in order to improve the performance of 

the model, the dataset should be expanded, and the class 

imbalance problem should be addressed. Furthermore, 

testing the model on different rooms, environments, and 

sensor placements will allow a more comprehensive 

evaluation of its generalization capability. 
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