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 The analysis of sports movements is of great importance for optimizing sports 

performance, minimizing injury risks, and ensuring that athletes work with correct techniques. 

Powerlifting is a power sport consisting of fundamental movements such as bench press, deadlift, 

and squat. These movements are inherently complex and challenging to execute. Therefore, it is 

of great importance to perform these movements with the correct technique and safely. The aim 

of this study was to classify these movements using deep learning methods to ensure that the basic 

movements in powerlifting sports (bench press, deadlift, and squat) are applied with correct 

techniques and to minimize the risk of injury. In this study, feature extraction was performed on 

powerlifting movements using the deep learning-based SqueezeNet model, followed by 

classification using machine learning methods. The dataset was compiled from 876 images of 

bench press, deadlift, and squat movements sourced from various online platforms. Additionally, 

the dataset was expanded through data augmentation techniques, and key points of posture 

estimation were added to the images using the Mediapipe library. The obtained datasets were 

classified using Neural Network, Logistic Regression, Support Vector Machine and Random 

Forest algorithms and model performances were evaluated using various metrics. The findings 

revealed that the Neural Network model demonstrated superior performance, achieving the highest 

accuracy (0.989). Additionally, the integration of pose estimation and data augmentation 

techniques significantly enhanced classification accuracy and overall model performance. The 

findings of this study show that deep learning methods are powerful tools in sports movement 

analysis and can make significant contributions to the evaluation of athletes' performance. 
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1. Introduction 

Sport plays a crucial role in both physical and mental 

health. Regular exercise offers numerous benefits, such as 

improved body function, increased muscle strength, 

weight management and improved flexibility [1]. The 

positive effects of regular exercise on health have been 

substantiated by various scientific studies. Warburton et al. 

reported that aerobic activities improve cardiovascular 

health, lower blood pressure and stabilize cholesterol 

levels [1]. Sports activities also provide significant 

psychological benefits such as reduced stress, improved 

mental health and increased social interaction [2]. Another 

study demonstrated that physical activity is effective in 

preventing obesity and managing body weight [3]. 
Regular exercise also improves physical functioning by 

increasing muscle strength, flexibility and coordination. 

Sport also has numerous positive effects on mental health. 

Physical activity has been reported to improve 

concentration, focus and cognitive functioning [4]. 
Another study found that regular exercise reduces 

symptoms of depression and anxiety [5]. Sport increases 
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overall psychological well-being by strengthening feelings 

of self-confidence and self-efficacy [6]. Sport has positive 

effects not only on health and psychology, but also on 

athletic performance. One study found that regular training 

improves physical capacities such as endurance, strength 

and agility [7]. In conclusion, it is clear that playing sports 

offers multifaceted benefits in terms of health, psychology 

and performance.  

Some sports movements are considered fundamental 

because they work many muscle groups at the same time. 

Powerlifting is a strength sport that consists of three 

fundamental movements: squat, bench press and deadlift. 

These three fundamental movements engage all major 

muscle groups in the body. Powerlifting is characterized 

as a maximal strength sport. Athletes are allowed three 

attempts per movement category, during which they must 

lift the maximal load in a single repetition. The highest 

weights lifted by athletes in each category are totaled to 

determine their score [8]. The squat is a fundamental lower 

body exercise that primarily strengthens the quadriceps, 

glutes, and lower back muscles. The deadlift is known as 

a basic lower body exercise that works the back, 

hamstrings and glutes the most. The squat primarily targets 

the lower body and knee joints, whereas the deadlift 

primarily targets the torso, hips, and back [9]. Bench press 

is a basic upper body exercise that intensively works the 

chest, shoulder and arm muscles [10]. 

 

Figure 1. The Fundamental Movements Utilized in 

Powerlifting a) Bench Press, b) Deadlift, c) Squat [11] 

As depicted in Figure 1.a, the bench press is a 

fundamental sports movement executed by lying supine on 

a bench and pressing the barbell upward over the chest. 

The deadlift, illustrated in Figure 1.b, is executed by 

bending at the hips and lifting the barbell from the ground. 

The squat, as shown in Figure 1.c, is a fundamental sports 

movement performed by squatting down and lifting the 

barbell onto the shoulders. However, it is very important 

to perform sports movements with the correct technique 

and safely. Incorrect movement forms increase the risk of 

injury and negatively affect the performance of athletes 

[12]. Particularly in high-load movements such as the 

bench press, squat, and deadlift, proper technique and 

precision are of paramount importance. Therefore, 

executing powerlifting movements with correct techniques 

is critical for minimizing the risk of injury and optimizing 

athletic performance. Currently, the application of deep 

learning techniques in the analysis of sports movements is 

rapidly expanding, enabling the achievement of high 

accuracy rates. 

The application of deep learning in sports motion 

analysis has emerged as a prominent area of research in 

recent years. In a literature review on machine and deep 

learning techniques for automatic detection and 

recognition of sports gestures, Cust et al. emphasize the 

need to adopt approaches appropriate to the characteristics 

of these gestures [13]. Ronao, C. A., & Cho, S. B., in a 

study on deep learning-based human activity recognition 

using data collected from smartphone sensors, achieved 

successful results in recognizing sports activities (walking, 

running, cycling, etc.) [14]. In another study, Wang, P. 

examined the recognition of sports training actions using 

deep learning algorithms and suggested the use of these 

algorithms in action recognition [15]. Pajak, G. et al. 

examines the performance of deep learning, specifically 

CNN and ensemble approaches in sports activity 

recognition using inertial sensor data [16]. Xu, Y. 

demonstrated that a deep learning-based sports training 

video classification model offers high accuracy and speed 

in recognizing training actions [17].  

Pan, S. proposes a method for automating basic posture 

and motion recognition in sports videos, with a particular 

focus on weightlifting, using deep learning techniques. 

This method aims to address the challenges faced by 

traditional target detection and tracking methods (e.g. 

image distortion, background effect, suddenly changing 

lighting). The proposed RoI_KP method automatically 

detects basic postures by fine-tuning region-based 

classification and convolutional neural networks [18]. 

Wang, L. et al. developed a big data and deep learning 

based classification model focusing on automatic 

understanding of human movements in free gymnastics 

videos. This model significantly improves the accuracy in 

the classification of sports videos [19]. Zhao, X., 

conducted a study aiming to analyze and correct incorrect 

technical movements in the training of young athletes 

using deep learning. They developed a model based on 

convolutional neural networks (CNN) and deep learning 

(DL) for the detection of incorrect movements during 

physical education and training process. Simulation results 

indicate that this method achieves a false movement 

detection accuracy of 92.16% [20].  

In a 2021 study, Ferreira, B. et al. investigated the use 

of computer vision and deep learning techniques to 

automatically determine the number of repetitions and the 

validity of sports movements. In this study, a system for 

counting and validating exercise repetitions was developed 

using 2D human posture estimation, and incorrect exercise 

repetitions were detected. The researchers collected data 

on five popular CrossFit exercises from more than 130 

participants, and the repetition counting and validation 

module developed with this data was able to take the 

predicted exercise moments and determine the number of 
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valid repetitions with over 92% accuracy [21]. Chen, K.-

Y. et al. conducted a similar study and developed a fitness 

gesture detection and classification system for home 

fitness exercisers to prevent injuries caused by faulty 

movements. The developed system provided real-time 

detection of 12 distinct fitness movements using YOLOv4 

object detection and MediaPipe pose estimation. The 

results indicated that 98.56% accuracy was achieved in 

movement type classification, while 92.84% accuracy was 

recorded in movement completion classification. The 

system operates in real-time at an average speed of 17.5 

FPS. This research led to the development of a highly 

accurate and efficient fitness motion detection system, 

utilizing a combination of transfer learning and object 

detection-pose estimation techniques [22]. 

A review of the literature reveals that existing studies 

accurately describe the characteristics of human 

movements. These studies facilitate the evaluation and 

correction of incorrect movements in sports training by 

accurately detecting such movements. In this way, it helps 

athletes to improve their sports movement techniques. In 

the literature, deep learning methods have been widely 

used for analyzing sports movements. However, the 

majority of these studies have concentrated on sports 

activities such as walking and running. There is a lack of 

studies analyzing complex and technical movements such 

as powerlifting using deep learning methods that achieve 

high accuracy rates. The primary objective of this study is 

to analyze and classify powerlifting movements using 

deep learning techniques with high accuracy. Therefore, 

this study aims to explore the potential of deep learning-

based methods in the analysis of sports movements. This 

research contributes to the field by providing a novel 

approach to analyzing powerlifting movements with deep 

learning, addressing an existing gap in the literature. In 

practice, this study is expected to contribute to the 

development of a system that enables athletes and coaches 

to evaluate performance in a more objective and scientific 

manner. 

2. Material and Methods  

In this study, the SqueezeNet model, a lightweight and 

fast convolutional neural network architecture, was 

utilized to extract features from Powerlifting images. The 

extracted features were subsequently input into various 

machine learning algorithms, including Neural Network, 

SVM, Logistic Regression, and Random Forest, and the 

classification results were analyzed in detail. The 

performance of each model was evaluated using common 

performance metrics such as Accuracy, F1-Score, and 

AUC (Area Under the Curve). Figure 2 provides a 

summary of the data flow and modeling process employed 

throughout the study. 

 

Figure 2. Flowchart of the Modeling Process Used for 

Classification of Powerlifting Movements 

2.1. Data Set 

In this study, a dataset containing Powerlifting 

movements (bench press, squat, deadlift) was compiled 

from various online sources. As depicted in Figure 3, the 

original dataset consists of 217 images for the bench press, 

359 images for the deadlift, 300 images for the squat, 

totaling 876 images. Due to variations in the resolution and 

quality of the images, the first step involved scaling all 

images to 640x640 pixels. 

 
Figure 3. Dataset and Distribution by Category 

Data augmentation encompasses techniques used to 

generate synthetic data by introducing minor variations to 

the existing dataset. These techniques help to avoid 

overfitting by increasing the variety of data without 

changing the model's predictions. Consequently, this 

enables the model to learn more generalizable features 

rather than memorizing random patterns [23]. In this study, 

the rotation method, a common data augmentation 

technique, was employed. Random rotations ranging from 

-15° to +15° were applied to the original images. As a 

result of this process, a total of 2557 images were 

generated from the original 876 images. Specifically, the 

number of Bench Press images increased from 217 to 636, 

Squat images from 300 to 875, and Deadlift images from 
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Collected Data 217 359 300 876

Augmented Data 636 1046 875 2557
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359 to 1046. This data augmentation process aims to make 

the model learn more generalizable and robust features. 

2.2. Using Mediapipe Library 

Mediapipe is an open-source framework developed by 

Google and used in image and video processing and media 

applications. In particular, the framework utilizes deep 

learning techniques to detect and track objects such as the 

human body and face. One of the most important features 

of Mediapipe is its real-time processing capability, making 

it an ideal solution for interactive applications. Where 

traditional inverse kinematics approaches fail to address 

the diversity of human postures, Mediapipe is designed to 

overcome these limitations. The Mediapipe library has 

been tested on exercise videos and fall scenarios and 

demonstrated the ability to run in real-time at 33ms per 

frame, even on single-board computers without GPUs 

[24]. The distribution of 33 key points obtained using 

Mediapipe with these features is given in Figure 4. 

 
Figure 4.  Distribution of 33 key points obtained using 

Mediapipe. 

In this study, Mediapipe library is used to perform 3D 

pose estimation on 2557 images. The Pose Estimation 

module of Mediapipe includes an artificial intelligence 

model capable of estimating the position and posture of the 

human body with high accuracy. This model enabled the 

extraction of 3D skeletal data for each image by 

identifying 33 key points of the human body. In this way, 

data containing the coordinates of the 33 key points were 

obtained for each image. As depicted in Figure 5, these key 

points were superimposed onto each image. 

 
Figure 5. Visualization of the Skeletal Structure with 33 Key 

Points Identified in the Deadlift Movement Using the 

Mediapipe Library 

 

2.3. Feature extraction with Deep Learning 

SqueezeNet is a low-parameter Convolutional Neural 

Network (CNN) architecture developed by deep learning 

researchers, specifically designed for deployment on 

mobile and embedded devices. Compared to larger models 

such as AlexNet, this architecture requires significantly 

less computational overhead while achieving similar levels 

of accuracy. SqueezeNet is a CNN architecture that 

achieves AlexNet-level accuracy on ImageNet with 50 

times fewer parameters. The basic building block of 

SqueezeNet is a module called the "Fire Module", which 

consists of squeeze and expand stages. The Fire Module 

plays a critical role in reducing the number of parameters 

of the model by significantly reducing the input channels. 

The SqueezeNet architecture consists of 8 Fire Modules 

and the initial and output layers [25]. 

 
Figure 6.  Architectural Structure of the SqueezeNet Model 

As shown in Figure 6, SqueezeNet begins with a single 

initial convolution layer (conv1) followed by 8 "Fire 

Modules" (fire2-9). At the end of the model, a single 

output convolution layer (conv10) is present. The number 

of filters within the Fire Modules increases with the depth 

of the network, meaning that more filters are employed in 

the later modules. Furthermore, max-pooling layers are 

applied after conv1, fire4, fire8 and conv10. These 

architectural design decisions aim to enable SqueezeNet to 

achieve AlexNet-level accuracy by significantly reducing 

the number of parameters. In particular, the Fire Module 

structure and the strategic positioning of the pooling layers 

contribute to the realization of this goal. The use of fewer 

layers in SqueezeNet allows the model to remain 

lightweight and operate with lower memory requirements 

[25]. 

In conclusion, the basic structure of the SqueezeNet 

architecture, the Fire Module design and the positioning of 

the pooling layers, is an efficient deep learning 

architecture that aims to achieve high accuracy while 

significantly reducing the number of parameters. In this 

study, 1000 features were extracted for each image from 

the conv10 layer, one of the final layers of SqueezeNet. 

These features represent high-level abstractions necessary 

for deep learning models to effectively interpret the 

images. However, high-dimensional feature vectors can 

increase computational complexity and reduce the model's 

generalization ability. For this reason, the Gini feature 

selection algorithm was used to select the most meaningful 

and discriminative features among the 1000 features. At 

the end of this process, the top 500 features that offer the 

best performance for the classification process were 
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identified and these features were used in the training and 

testing phases of the model. 

2.4. Machine Learning Algorithms 

In this study, widely utilized machine learning 

algorithms, including Neural Networks, Logistic 

Regression, SVM, and Random Forest, were employed. 

Neural Networks are computational models that 

function similarly to neurons and synaptic connections in 

the brain [26]. Deep learning architectures consisting of 

multiple layers, trained with back-propagation algorithms, 

provide high success in complex problems such as image, 

voice, language processing [27]. Combines feature 

extraction and classification and includes a large number 

of parameters, can learn more powerful representation 

[28]. 

Logistic Regression is a linear classification algorithm 

and is often used for binary classification problems 

[29].  By utilizing a linear combination of independent 

variables, it calculates the probability of the dependent 

variable and predicts class labels. The parameters of 

Logistic Regression are learned through optimization 

techniques, including gradient descent. This algorithm is 

particularly effective when classes can be clearly separated 

from each other [30]. 

Support Vector Machine (SVM) is an algorithm 

applicable to both classification and regression tasks. Its 

main goal is to find the optimal separating hyperplane 

between classes. SVM is also capable of solving non-

linear problems using kernel functions [31]. It is robust to 

outliers and noise, and is effective for high-dimensional 

data [32].  

Random Forest is an ensemble learning algorithm that 

combines a large number of decision trees [33]. Each tree 

is trained on a random subset of the training data and the 

final classification or regression prediction is made based 

on the majority of the results. Random Forest is robust to 

outliers, noise and overfitting problems, and is also notable 

for its ability to perform variable importance ranking [34]. 

2.5. Performance Metrics 

One of the main methods used to evaluate the 

performance of machine learning models is confusion 

matrix analysis. The confusion matrix provides a summary 

of the accuracy of the model's predictions across various 

categories and includes four key components: True 

Positives (TP), True Negatives (TN), False Positives (FP), 

and False Negatives (FN). 

 
Figure 7.  Confusion Matrix for Binary Classification 

True Positives (TP): Instances that the model correctly 

predicts as positive outcome. True Negatives (TN): 

Instances that the model correctly predicts as negative 

outcome. False Positives (FP): Instances where the model 

incorrectly predicts a positive outcome (Type I error). 

False Negatives (FN): Instances that the model incorrectly 

predicts as negative outcome (Type II error). Various 

performance metrics can be derived from the confusion 

matrix, as presented in Table 1 [35]. 

Table 1. Performance Metrics and Corresponding Formulas 

Performance Metric Formula 

Accuracy(CA): The ratio of 

correctly classified samples to 

total samples. 
 

Precision(Prec): Indicates how 

many of the samples predicted 

positive are actually positive. It 

is important for situations that 

aim to reduce the rate of false 

positives. 

 

Recall or True Positive Rate: 

Shows how many true positive 

samples are correctly predicted. 

Refers to the model's ability to 

capture the positive class. 

 

F1-Score: The harmonic mean 

of Precision and Recall metrics 

and may be a more meaningful 

measure, especially in 

imbalanced datasets. 

 

Matthews Correlation 

Coefficient (MMC): MCC is a 

powerful performance metric 

used in classification problems 

and measures the overall 

accuracy of a classifier by 

taking into account all 

complexity matrix components 

(TP, TN, FP, FN). MCC is 

considered an important metric, 

especially in imbalanced 

datasets. Its value ranges from -

1 to +1, with +1 indicating 

perfect classification, 0 

indicating random prediction, 

and -1 indicating completely 

incorrect prediction. 
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AUC - Area Under the Curve: AUC is a metric that indicates the 

overall performance of the classifier and takes a value between 0 and 1. 

Values closer to 1 represent better classification performance. 

3. Results 

This study demonstrates that sports activities can be 

successfully recognized using deep learning techniques, 

enabling detailed analysis of associated movement 

techniques. The datasets used in the study consist of 876 

images for the analyses in Table 2 and Table 4, and 2557 

images obtained with data augmentation techniques for the 

analyses in Table 3 and Table 5. Eighty percent of the data 

was allocated for model training and twenty percent for 

testing. After the data sets were separated by random 

sampling method in each iteration, each model was trained 

10 times and test results were obtained. The training and 

testing processes of the model were carried out on a 

computer with Intel(R) Core (TM) i3-4000M CPU @ 

2.40GHz, 8GB RAM, AMD Radeon R5 M230 Series 

graphics card. 

In this study, it was found that the combination of image 

and skeletal data, as well as data augmentation techniques, 

significantly improved the model performance. In 

addition, the choice of the deep learning algorithm used 

has a significant impact on the classification results. The 

results obtained throughout the study are presented in step-

by-step tables. Table 2 provides a summary of the analysis 

results using the initial dataset (876 images). 

Table 2. Results with the initial data set 

Model AUC CA F1 Prec Recall MCC 

Neural 

Network 

0.988 0.925 0.923 0.922 0.925 0.886 

Logistic 

Regression 

0.987 0.923 0.921 0.920 0.923 0.882 

SVM 0.986 0.921 0.919 0.919 0.920 0.879 

Random 

Forest 

0.932 0.804 0.803 0.806 0.808 0.700 

As presented in Table 2, the Neural Network model 

demonstrated the best performance, achieving an accuracy 

(CA) of 0.925 and an AUC value of 0.988, while the 

Random Forest model exhibited comparatively lower 

performance relative to the other algorithms. Figure 8 

shows the ROC (Receiver Operating Characteristic) 

curves of different machine learning models trained using 

the baseline dataset for Bench Press, deadlift and Squat 

movements respectively. 

 
Figure 8. ROC Curves for the Initial Data Set 

Figure 8 compares the ROC curves of Neural Network, 

Logistic Regression, SVM and Random Forest models. 

Neural Network and Logistic Regression models show the 

best performance with high AUC values. 

Table 3 summarizes the results of the analyses 

performed using the expanded dataset of 2557 images 

obtained through the data augmentation process. 

Tablo 3. Results with augmented data set 

Model AUC CA F1 Prec Recall MCC 

Neural 

Network 

0.999 0.983 0.983 0.983 0.982 0.974 

Logistic 

Regression 

0.998 0.977 0.977 0.977 0.976 0.964 

SVM 0.999 0.974 0.974 0.973 0.975 0.961 

Random 

Forest 

0.967 0.875 0.875 0.876 0.874 0.809 

The results in Table 3 show that the model performance 

improves significantly by increasing the data set. The 

Neural Network model emerges as the best-performing 

model, achieving an accuracy (CA) of 0.983. It is evident 

that the application of data augmentation techniques leads 

to increased model accuracy and improved classification 

performance. While the Random Forest model exhibited 

inferior performance compared to the other algorithms, it 

nonetheless demonstrated improved results with the 

expanded dataset. 

Figure 9 compares the ROC curves of various machine 

learning models trained on the dataset obtained through the 

data augmentation process. The Neural Network and SVM 

models exhibit the best performance, reflected in their high 

AUC values. 
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Figure 9. ROC Curves for the Augmented Data Set 

Table 4 provides a summary of the analyses conducted 

using the initial dataset for pose estimation with 

Mediapipe. This dataset was generated by applying pose 

estimation to the base dataset of 876 images and 

overlaying the key points onto each image. Pose 

estimation for each image was performed using the 

Mediapipe library, with the resulting estimations 

superimposed onto the images. 

Table 4. Results obtained using the initial dataset for posture 

estimation with Mediapipe. 

Model AUC CA F1 Prec Recall MCC 

SVM 0.982 0.919 0.919 0.921 0.918 0.877 

Neural 

Network 

0.984 0.916 0.915 0.913 0.917 0.873 

Logistic 

Regression 

0.982 0.909 0.906 0.905 0.907 0.861 

Random 

Forest 

0.922 0.795 0.797 0.836 0.825 0.696 

The results in Table 4 show that the model performance 

is slightly degraded compared to the augmented dataset in 

Table 2 when the data obtained by predicting posture on 

the base dataset is used. The SVM model emerges as the 

best-performing model in this classification task, 

achieving a CA of 0.919. Although posture estimation 

results in a minor decrease in model accuracy, the models 

continue to perform at a reasonable level. 

Figure 10 compares the ROC curves of various machine 

learning models trained on the dataset with Mediapipe 

posture prediction. The SVM and Neural Network models 

exhibit the best performance, reflected in their high AUC 

values. 

  

 
Figure 10. ROC Curves for the Dataset Used in Posture 

Estimation with Mediapipe 

In this study, the analysis of the augmented dataset, 

obtained by combining posture estimation and data 

augmentation techniques, demonstrates significant 

improvements in the recognition of sports activities. 

Posture estimation enables the detection of various key 

points on the human body, which are then input into deep 

learning models. Following the application of pose 

estimation to the baseline dataset, the dataset was 

expanded using data augmentation techniques, and 

machine learning models were subsequently trained on 

this new dataset. Table 5 provides a summary of the results 

of these analyses. 

Table 5. Results Using the Augmented and Pose Estimation 

Dataset". 

Model AUC CA F1 Prec Recall MCC 

Neural 

Network 

1.000 0.989 0.989 0.989 0.990 0.983 

SVM 0.999 0.980 0.981 0.981 0.981 0.969 

Logistic 

Regression 

0.998 0.978 0.977 0.977 0.978 0.967 

Random 

Forest 

0.975 0.894 0.894 0.896 0.892 0.837 

The results presented in Table 5 are obtained by pose 

estimation on a dataset that was expanded from 876 

images to 2557 images through data augmentation. These 

results show a significant improvement in the performance 

of the model.  The Neural Network model improves from 

an initial accuracy of 0.925 to an accuracy (CA) of 0.989, 

from an AUC of 0.988 to an AUC of 1,000 and still 

emerges as the best performer in this classification task. 

The combination of pose estimation and data 
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augmentation techniques significantly improved the 

classification accuracy and overall performance of the 

model. 

  

 
Figure 11. ROC Curves for the Augmented and Pose 

Estimation Data Set 

Figure 11 compares the ROC curves of various machine 

learning models trained on the augmented dataset 

enhanced with pose estimation. The Neural Network 

model performs near-perfectly in terms of area under the 

ROC curve (AUC), making it the best model for this 

classification task. Upon analyzing the results, it is evident 

from Table 5 and Figure 11 that the posture prediction 

technique with Mediapipe significantly enhances model 

performance as the dataset size increases. Compared to the 

baseline dataset, the combination of pose estimation and 

data augmentation techniques resulted in significant 

improvements in classification accuracy and other 

performance metrics.  

4. Conclusions 

This study deals with the classification of powerlifting 

movements using deep learning methods and the results 

obtained with high accuracy rates show that these methods 

can be a powerful tool for sports movement analysis. The 

high performance observed indicates that the model is 

suitable for real-world applications, as deep learning 

models can effectively recognize sports movements, 

playing a crucial role in the evaluation of athletes' 

performance. These findings suggest that deep learning 

methods can find a wider application area in sports 

sciences. 

There are several critical areas where this study could 

be extended and further developed. First, expanding the 

datasets used and including data from different sports can 

improve the generalizability and reliability of the models. 

For instance, recognizing a broader range of sports 

movements, including more complex patterns, could test 

the limits of deep learning models and contribute to the 

body of knowledge in this field. Furthermore, the 

development of real-time motion recognition and analysis 

systems can be adapted for use in mobile devices and 

wearable technologies. Such applications could assist 

athletes in optimizing their performance by providing 

instant feedback during training. Another critical research 

direction involves comparing different deep learning 

architectures and algorithms to assess their impact on 

sports motion analysis. Specifically, hybrid models that 

combine deep learning methods could be developed to 

further enhance model performance. 

In conclusion, the findings of this study indicate that 

analyzing sports movements using deep learning can be 

valuable not only for evaluating athletic performance but 

also for injury prevention and monitoring rehabilitation 

processes. Detecting and correcting improper movements 

in athletes can minimize the risk of injury and safeguard 

the long-term health of athletes. In summary, this study has 

shown that power sports movements such as powerlifting 

can be successfully analyzed with deep learning 

techniques and that these methods can play an important 

role in sports science in the future. Ongoing research in 

this area will contribute to the development of next-

generation tools that can assist athletes in better 

understanding and enhancing their performance. 

References 

[1] D. E. Warburton, C. W. Nicol, and S. S. Bredin, "Health 

benefits of physical activity: the evidence," CMAJ, vol. 174, no. 

6, pp. 801-9, Mar 14 2006, doi: 10.1503/cmaj.051351. 

[2] F. J. Penedo and J. R. Dahn, "Exercise and well-being: a review 

of mental and physical health benefits associated with physical 
activity," Current Opinion in Psychiatry, vol. 18, no. 2, pp. 

189-193, 2005. [Online]. Available: 

https://journals.lww.com/co-

psychiatry/fulltext/2005/03000/exercise_and_well_being__a_

review_of_mental_and.13.aspx. 

[3] J. E. Donnelly, S. N. Blair, J. M. Jakicic, M. M. Manore, J. W. 

Rankin, and B. K. Smith, "Appropriate physical activity 

intervention strategies for weight loss and prevention of weight 
regain for adults," Medicine & Science in Sports & Exercise, 

vol. 41, no. 2, pp. 459-471, 2009. 

[4] J. E. Donnelly et al., "Physical activity, fitness, cognitive 

function, and academic achievement in children: a systematic 

review," Medicine and science in sports and exercise, vol. 48, 

no. 6, p. 1197, 2016. 

[5] F. B. Schuch, D. Vancampfort, S. Rosenbaum, J. Richards, P. 

B. Ward, and B. Stubbs, "Exercise improves physical and 
psychological quality of life in people with depression: A meta-

analysis including the evaluation of control group response," 

Psychiatry research, vol. 241, pp. 47-54, 2016. 

[6] Y. Laird, S. Fawkner, and A. Niven, "A grounded theory of 

how social support influences physical activity in adolescent 

girls," International journal of qualitative studies on health and 

well-being, vol. 13, no. 1, p. 1435099, 2018. 

[7] A. Hecksteden, J. Kraushaar, F. Scharhag-Rosenberger, D. 
Theisen, S. Senn, and T. Meyer, "Individual response to 

exercise training-a statistical perspective," Journal of applied 

physiology, vol. 118, no. 12, pp. 1450-1459, 2015. 

[8] P.-M. Ferland and A. S. Comtois, "Classic Powerlifting 

https://journals.lww.com/co-psychiatry/fulltext/2005/03000/exercise_and_well_being__a_review_of_mental_and.13.aspx
https://journals.lww.com/co-psychiatry/fulltext/2005/03000/exercise_and_well_being__a_review_of_mental_and.13.aspx
https://journals.lww.com/co-psychiatry/fulltext/2005/03000/exercise_and_well_being__a_review_of_mental_and.13.aspx


Celikel and Ozkan, International Journal of Applied Methods in Electronics and Computers 12(3): 72-80, 2024 

- 80 - 

 

Performance: A Systematic Review," The Journal of Strength 

& Conditioning Research, vol. 33, pp. S194-S201, 2019, doi: 

10.1519/jsc.0000000000003099. 

[9] M. E. Hales, B. F. Johnson, and J. T. Johnson, "Kinematic 

analysis of the powerlifting style squat and the conventional 

deadlift during competition: is there a cross-over effect 

between lifts?," The Journal of Strength & Conditioning 
Research, vol. 23, no. 9, pp. 2574-2580, 2009. 

[10] A. Brennecke et al., "Neuromuscular activity during bench 

press exercise performed with and without the preexhaustion 

method," The Journal of Strength & Conditioning Research, 

vol. 23, no. 7, pp. 1933-1940, 2009. 

[11] J. Siewe, J. Rudat, M. Röllinghoff, U. Schlegel, P. Eysel, and 

J.-P. Michael, "Injuries and overuse syndromes in 

powerlifting," International journal of sports medicine, vol. 32, 
no. 09, pp. 703-711, 2011. 

[12] W. H. Meeuwisse, H. Tyreman, B. Hagel, and C. Emery, "A 

Dynamic Model of Etiology in Sport Injury: The Recursive 

Nature of Risk and Causation," Clinical Journal of Sport 

Medicine, vol. 17, no. 3, pp. 215-219, 2007, doi: 

10.1097/JSM.0b013e3180592a48. 

[13] E. E. Cust, A. J. Sweeting, K. Ball, and S. Robertson, "Machine 

and deep learning for sport-specific movement recognition: A 
systematic review of model development and performance," 

Journal of sports sciences, vol. 37, no. 5, pp. 568-600, 2019. 

[14] C. A. Ronao and S.-B. Cho, "Human activity recognition with 

smartphone sensors using deep learning neural networks," 

Expert systems with applications, vol. 59, pp. 235-244, 2016. 

[15] P. Wang, "Research on sports training action recognition based 

on deep learning," Scientific Programming, vol. 2021, no. 1, p. 
3396878, 2021. 

[16] G. Pajak, P. Krutz, J. Patalas-Maliszewska, M. Rehm, I. Pajak, 

and M. Dix, "An approach to sport activities recognition based 

on an inertial sensor and deep learning," Sensors and Actuators 

A: Physical, vol. 345, p. 113773, 2022. 

[17] Y. Xu, "A sports training video classification model based on 

deep learning," Scientific Programming, vol. 2021, no. 1, p. 

7252896, 2021. 
[18] S. Pan, "A method of key posture detection and motion 

recognition in sports based on Deep Learning," Mobile 

Information Systems, vol. 2022, no. 1, p. 5168898, 2022. 

[19] L. Wang, H. Zhang, and G. Yuan, "Big Data and Deep 

Learning‐Based Video Classification Model for Sports," 

Wireless Communications and Mobile Computing, vol. 2021, 

no. 1, p. 1140611, 2021. 

[20] X. Zhao, "Analysis and Correction of Wrong Technical 

Actions in Juvenile Sports Training Based on Deep Learning," 

Computational Intelligence and Neuroscience, vol. 2022, no. 1, 
p. 6492410, 2022. 

[21] B. Ferreira et al., "Deep learning approaches for workout 

repetition counting and validation," Pattern Recognition 

Letters, vol. 151, pp. 259-266, 2021. 

[22] K.-Y. Chen, J. Shin, M. A. M. Hasan, J.-J. Liaw, O. Yuichi, 

and Y. Tomioka, "Fitness movement types and completeness 

detection using a transfer-learning-based deep neural network," 

Sensors, vol. 22, no. 15, p. 5700, 2022. 
[23] C. Shorten, T. M. Khoshgoftaar, and B. Furht, "Text data 

augmentation for deep learning," Journal of big Data, vol. 8, 

no. 1, p. 101, 2021. 

[24] J.-W. Kim, J.-Y. Choi, E.-J. Ha, and J.-H. Choi, "Human pose 

estimation using mediapipe pose and optimization method 

based on a humanoid model," Applied sciences, vol. 13, no. 4, 

p. 2700, 2023. 
[25] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. 

Dally, and K. Keutzer, "SqueezeNet: AlexNet-level accuracy 

with 50x fewer parameters and< 0.5 MB model size," arXiv 

preprint arXiv:1602.07360, 2016. 

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning 

representations by back-propagating errors," nature, vol. 323, 

no. 6088, pp. 533-536, 1986. 

[27] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, 
vol. 521, no. 7553, pp. 436-444, 2015. 

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. 

MIT press, 2016. 

[29] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, 

The elements of statistical learning: data mining, inference, 

and prediction. Springer, 2009. 

[30] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and 

machine learning (no. 4). Springer, 2006. 

[31] C. Cortes and V. Vapnik, "Support-vector networks," Machine 

learning, vol. 20, pp. 273-297, 1995. 
[32] B. Schölkopf and A. J. Smola, Learning with kernels: support 

vector machines, regularization, optimization, and beyond. 

MIT press, 2002. 

[33] L. Breiman, "Random forests," Machine learning, vol. 45, pp. 

5-32, 2001. 

[34] A. Liaw and M. Wiener, "Classification and regression by 

randomForest," R news, vol. 2, no. 3, pp. 18-22, 2002. 

[35] M. Sokolova and G. Lapalme, "A systematic analysis of 
performance measures for classification tasks," Information 

processing & management, vol. 45, no. 4, pp. 427-437, 2009. 

 


