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 Considering the design and operating conditions of transformers, electromagnetic and mechanical 

stresses cause aging and negatively affect their operating performance. Advanced fault diagnosis 

methods have been developed based on information system-based remote online monitoring or 

electrical data obtained from sensors or sample windings added to the transformer core. The 
electromagnetic field distribution in the core structure of the transformer can respond quickly and 

effectively to fault situations. Therefore, changes in flux density within the core can be analyzed 

using image processing and/or data analysis methods. In this study, electromagnetic modeling of 

a distribution transformer with nominal values of 34.5/0.4 kV and 2000 kVA was conducted using 
Finite Element Analysis (FEA) software. Image processing techniques were applied to observe the 

behavior of the flux distributions on the core when the transformer was under nominal sinusoidal 

voltage. Then, considering the effect of the flux distribution in the core on the thermal state of the 
transformer, the thermal behavior of the core was derived with mathematical equations and shown 

on the transformer. Thus, the flux distribution in the core of a distribution transformer operating 

under nominal power conditions was examined and, a novel approach based on simulation studies 

was proposed to determine the flux distributions and thermal behavior of the transformer under 
fault conditions. 
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1. Introduction 

In recent years, the performance of transformers in terms 

of their electromagnetic and mechanical effects and 

nonlinear behavior depending on operating conditions has 

become a subject that requires further study. While these 

studies are possible experimentally on the material or with 

remote monitoring, they can also be carried out with 

electromagnetic modeling-based software such as Finite 

Element Analysis (FEA), which allows simulation studies of 

operating conditions during the R&D process [1]. Electrical 

power losses occurring in the core and windings may vary 

depending on operating conditions. The operating conditions 

of transformers can generally be described as distortions in 

flux distribution due to insulation problems in the windings, 

extra power losses due to leakage flux behavior at the core 

junctions, and power losses due to harmonic components 

resulting from their increased exposure to non-linear current 

loads in recent years. Mechanically, there may be vibration 

effects, temperature behavior, and cooling systems 

performance analysis, which directly affect the lifespan of 

the transformer. Vibration effects and temperature increases 

are important issues to consider as they accelerate the aging 

of insulation materials [2, 3]. Examples of past literature on 

these topics are summarized below. 

In general, electrical faults that occur due to insulation 

deterioration between the windings on the high-voltage side 

greatly affect the operating performance of the transformer. 

Hajiaghasi, et al. [4] examined in detail the leakage flux 

effects occurring in the transformer core for fault detection 

between the windings. Thus, by considering methods based 

on flux leakage, they also evaluated the location, severity, 

load power factor and loading effects of the transformer in 
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the process of detecting faults between the windings. As a 

result of these evaluations, they developed two online 

methods based on leakage flux and vibration analysis. In the 

first method, they analyzed the voltage values induced in the 

sample windings to detect the fault occurring in the 

transformer windings. In the second method, they measured 

the vibration of the transformer with a digital accelerometer 

sensor and compared two different vibration datasets for the 

faulty and non-faulty cases, and then performed the fault 

detection by taking into account the amount of difference 

between the reference values in the non-faulty state. In order 

to determine the accuracy of their proposed method, they 

conducted experiments on a distribution transformer rated at 

20/0.4 kV, 50 kVA rated values and compared them with 

simulation results. As a result, they stated that methods for 

detecting transformer faults based on leakage flux values can 

be used with high accuracy. 

Insulation deterioration occurring in transformer windings 

may cause the magnetic leakage flux distribution to change 

[5]. Remote online monitoring of magnetic flux changes is 

very important in preventing any faults in transformers 

before they occur. However, to detect transformer faults 

using this method, the magnetic flux distribution in the core 

must be known under many operating conditions. Ouyang, et 

al. [6] carried out simulation studies for different winding 

faults of a 35 kV power transformer. With these simulation 

studies, abnormal operating conditions, including DC 

component effects and external short circuit faults, were 

examined. As a result, it was determined that the leakage 

fluxes caused by different winding faults in transformers 

vary from one another. Additionally, the magnetic flux 

distribution within the core can be effectively utilized for 

diagnosing transformer faults and estimating fault locations. 

Winding faults occurring in transformers cannot be 

detected by traditional protective relays because they cause 

a small change in terminal currents and voltages. Mostafaei 

and Haghjoo [7] developed a technique based on the flux 

distribution in the core at nominal conditions in a non-faulty 

state, in order to detect winding faults occurring in power 

transformers. To determine the nominal flux distribution in 

the core, search coils were placed on the core legs and these 

coils were designed with multiple windings. Thus, under 

normal operating conditions, equal voltages were induced in 

the search coils due to equal (homogeneous flux distribution) 

flux passing through the transformer core parts (yoke and 

legs). However, if the voltage induced in any search coil 

differed from the nominal values, it was concluded that there 

was a fault in the transformer. A real 50 kVA, 20 kV/400 V 

three-phase distribution transformer was used to test the 

proposed method, and the proposed method was reported to 

work accurately in identifying transformer winding faults. 

Power transformers are exposed to a lot of electrical, 

mechanical and thermal stress during their operation. These 

pressures cause insulation failures, called aging, in 

transformers. Insulation faults can cause great damage to 

both the transformer and the grid in terms of power quality, 

and these bad effects cause huge costs [8]. For this reason, 

many studies have targeted approaches focused on early 

detection of transformer faults. In most of these approaches, 

a remote online monitoring method of power transformers 

that can be used experimentally is recommended. Cabanas, 

et al. [8] proposed to monitor the leakage flux behavior of 

the transformer online. For this purpose, they used an 

industrial power transformer with 400 kVA-20 kV rated 

values and measured the leakage flux of the transformer 

easily and inexpensively in faulty and non-faulty states, 

thanks to simple sensors. Then, they discussed the results 

obtained from these measurements and emphasized that their 

proposed method for measuring leakage flux behavior based 

on fault diagnosis works with high performance. A similar 

study to Cabanas, et al. [8] was also conducted by 

Athikessavan, et al. [9]. In that study, they presented a new 

technique for detecting inter-winding faults of dry-type 

transformers. In the presented method, they examined the 

online operating conditions of the transformer. In this 

method, they measured the leakage fluxes on the outer parts 

of the transformer using two flux sensors. Then, to test the 

accuracy of this proposed method, theoretical analyzes were 

carried out at different fault sizes and experimental tests were 

carried out on a transformer with a power rating of 10 kVA. 

Additionally, a factory-made device that monitors the 

healthy condition of the transformer was used to 

evaluate/compare the test results. Thus, it was seen that the 

results obtained in both cases were in agreement. 

Today, with the development of imaging tools and the use 

of image processing techniques, many faults that can 

endanger human life can be detected during the maintenance 

of transformers. Vidhya, et al. [10] obtained images using a 

thermal camera to observe the change in temperature 

distribution in and around transformer ventilation pipes. 

Then, they applied the Symlet wavelet transform to these 

images. After the transformation, the state of the transformer 

was easily observed by examining the parameters of the 

image at various decomposition levels. Various images 

obtained from decomposition clearly revealed the 

temperature changes in the ventilation pipes of the 

transformer under different operating conditions. The 

obtained images were compared with normal operating 

parameters and it was observed that there were large 

differences between the faulty state parameters. 

In general, thermal models are used to predict thermal 

behavior, hot spots and faults in transformers [12]. 

Shiravand, et al. [11] used a new thermal model, 

thermography, and fluid dynamics methods to obtain 

transformer oil and radiator temperature. In the model, they 

took into account the thermal behavior of the environment 

where the transformer is located, the oil in the boiler, the 

windings and the radiator. They modeled the heat transfer 

between these environments with nonlinear thermal 

resistances. They used three distribution transformers to test 
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the accuracy of their proposed method. They emphasized 

that the method they proposed was quite successful, 

according to the experimental results. In the study, they used 

a thermal camera to take thermal images and image 

processing techniques to analyze them. Using the thermal 

images obtained, they determined the temperature of the 

transformer oil and the radiator temperature. At the end of 

the study, they suggested that faults occurring in the 

transformer cooling system could be easily detected by using 

the thermal modeling they developed. 

In the event of power transformer failures, the location and 

type of failure must be determined accurately and quickly. 

For this purpose, Fang, et al. [12] proposed a technique based 

on infrared image processing techniques and semi-

supervised learning methods for transformer fault detection. 

In their study, they first extracted temperature, texture and 

shape features from infrared image data as model reference 

vectors. They then created a Generative Adversarial 

Network (GAN) to obtain synthetic data in addition to 

labeled features. In addition to traditional supervised 

learning methods, the method was able to learn information 

from unlabeled sample data. Finally, a dataset was obtained 

from a company in China to test their proposed method. As 

a result, they demonstrated that transformer fault 

classification can be made accurately with the proposed 

method. 

As can be understood from the above paragraphs, fault 

detection and thermal analysis remain an active research 

area. This study focuses on analyzing the thermal behavior 

of the transformer based on flux density. In this context, 

electromagnetic modeling of the power distribution 

transformer with 2000 kVA power and 34.5/0.4 kV voltage 

ratios was performed with FEA software. The flux 

distributions in the core were analyzed and flux extractions 

were conducted using image processing techniques. Thus, 

the flux distributions in the core of a power distribution 

transformer under nominal operating conditions were 

extracted and it became possible to visually analyze the 

electromagnetic effects of the core behavior on the flux 

distribution in fault situations. Subsequently, the effect of 

changing flux distribution in the core on the core temperature 

behavior in different fault situations was examined. Using 

image processing techniques, thermal images related to the 

flux distribution images of the core were extracted and the 

results obtained in the study were discussed comparatively.  

The study contributes significantly to the existing 

literature on transformer fault detection by proposing an 

image processing-based approach to analyze the flux 

distribution and its relationship with the thermal behavior of 

transformer cores. The use of FEA for modeling flux 

distribution under different fault conditions (healthy, short 

circuit, and voltage imbalance) adds a new dimension to fault 

diagnosis techniques. The study provides a visual analysis of 

flux distributions, which is unique in this field, allowing for 

better understanding and early detection of issues related to 

transformer windings and operating conditions. Moreover, 

the proposed method enhances the detection of potential 

faults by converting flux distribution data into thermal 

behavior images, helping to predict overheating and other 

issues that could cause transformer failure. 

Compared to existing methods such as vibration-based 

fault detection and search coil-based techniques, this study's 

approach offers a more precise and automated way of 

detecting faults through image processing techniques. 

Unlike traditional methods that rely on physical 

measurements or sensor data, this study integrates 

electromagnetic modeling and image processing to derive 

thermal behavior, which can lead to more accurate and faster 

fault detection. By creating a comprehensive dataset of 

images based on FEA simulations and applying multi-level 

thresholding techniques, the study moves beyond sensor-

based approaches, offering a highly efficient, non-intrusive 

solution for continuous monitoring and analysis of 

transformer conditions. 

The study focuses on determining the thermal behavior of 

transformers using flux density and image processing 

techniques. It contributes to the literature by integrating FEA 

with advanced image processing methods to model 

electromagnetic fields and derive thermal states under 

varying fault conditions. This work builds upon previous 

studies that have investigated fault detection in transformers 

using leakage flux and electromagnetic modeling. Recent 

advances in transformer fault detection have introduced 

various techniques that integrate flux analysis, image 

processing, and machine learning. For example, the work by 

Hajiaghasi, et al. [13] utilized leakage flux and vibration 

analysis for fault detection in transformer windings, 

demonstrating the effectiveness of flux-based diagnostics 

under different fault conditions. Similarly, Ouyang, et al. [6] 

applied magnetics flux leakage to simulate and diagnose 

winding faults under different operational conditions. Both 

of these studies rely on flux distribution, which is also central 

to the current study, where flux behavior is analyzed to 

derive the thermal state of the transformer using image 

processing. However, unlike these studies, our work 

uniquely combines FEA with image processing to directly 

link flux distributions to thermal behavior in fault conditions, 

allowing for a visual representation of both electromagnetic 

and thermal dynamics. While Mostafaei and Haghjoo [14] 

and Athikessavan, et al. [9] used flux sensors and search 

coils to detect abnormalities, their methods lack the thermal 

analysis dimension that this study incorporates. Cabanas, et 

al. [8] and Vidhya, et al. [10] focused on online monitoring 

and wavelet transformation of thermal images, which are 

akin to the image-based approach here but do not integrate 

FEA modeling for flux-to-thermal conversion. Finally, 

Shiravand, et al. [15] utilized thermography and fluid 

dynamics for predicting cooling system faults, providing a 

thermal perspective similar to the current study but without 

the detailed electromagnetic modeling. This study’s novel 

contribution lies in its ability to extract and analyze flux 
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distributions and corresponding thermal states 

simultaneously, offering a comprehensive method for fault 

detection in transformers. In summary, the proposed 

approach provides the following scientific contributions to 

the literature: 

• Extraction of the flux density to temperature through 

image processing, 

• Creating a dataset of images based on transformer FEA 

modelling and simulation, 

• Obtaining the temperature behavior of the transformer 

core from flux distributions using image processing 

technique. 

2. Electromagnetic Fundamentals of Transformers 

The basic operating principle of transformers is based on 

the induction principle. Transformers, whose basic structure 

is given in Figure 1, consist of a magnetic core and windings 

around the core. The operation of the transformer is 

generally explained by Maxwell's Faraday and Ampere 

equations. Equation 1 shows Faraday's law, which explains 

how time-varying magnetic fields create electric fields, 

Equation 2 shows Ampere's law, which explains that the 

source of the magnetic field is electric current and time-

varying electric field, Equation 3 shows Gauss's law, and 

Equation 4 shows Gauss's law for magnetism [16]. 

 

∇𝑋𝐸 = −𝜇
𝜕𝐻

𝜕𝑡
 

(1) 

∇𝑋𝐻 = 𝐽 +
𝜕𝐸

𝜕𝑡
 

(2) 

∇. 𝐷 = 𝜌0 (3) 

∇. 𝐸 = 0 (4) 

 

 

Figure 1. Structure and operating principle of the transformer 

When Vp voltage is applied to the primary winding, time-

varying flux begins to flow through the transformer 

according to Faraday's law. The core structure of the 

transformer has a greater permeability than the air in the 

external environment. Therefore, while most of the flux 

passes through the transformer core, a very small part of it 

spreads to the environment. The flux that spreads to the 

environment is called stray flux or stray flux. As the time-

varying flux passes through the secondary winding, a time-

varying voltage Vs is induced in the secondary winding. 

Unlike transformers manufactured in practice, the 

structure of the windings and core in an ideal transformer is 

perfect. Therefore, there is no loss. Since the permeability of 

the perfectly structured core is very high, no leakage flux 

occurs. In addition, in ideal transformers, the resistivity in 

the conductors is zero, so no voltage drop occurs. In practice, 

ideal transformer production is not possible. Therefore, 

leakage fluxes and physical properties of the windings 

should be taken into consideration when electromagnetic 

modeling of transformers [17].  

2.1. Transformer Power Losses 

Since there is no power loss in ideal transformers, the 

power values in the primary and secondary windings are 

equal. However, in practice, many losses occur due to the 

environmental and structural characteristics of transformers. 

The power relationship between the primary and secondary 

winding is given in Equation 5. (P1: 𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒘𝒊𝒏𝒅𝒊𝒏𝒈, 

S2: 𝒔𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚 𝒘𝒊𝒏𝒅𝒊𝒏𝒈) 

𝑃𝑜𝑤𝑒𝑟 𝑃1 =  𝑃𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑠 +  𝑃𝑜𝑤𝑒𝑟 𝑆2 (5) 

Transformer losses can be divided into two categories as 

loaded and no-load losses depending on the load condition, 

and core and winding losses can be divided into two 

categories according to their place of occurrence. Since 

transformers do not have any moving parts, mechanical 

losses do not occur. However, operating transformers under 

non-ideal loads also causes losses. Transformer losses are 

shown with a block diagram in Figure 2 [18].  

 

Figure 2. Transformer power losses 

Iron losses: These power losses occurring in the 

transformer core are also called core losses. The reason for 

this loss is the magnetic flux occurring in the core. Iron losses 

are equal to the sum of eddy current losses and hysteresis 

losses. 
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Copper losses: Power losses of transformers due to ohmic 

resistance are called copper losses. Copper losses (𝑷𝒄) are 

expressed in Equation 6 [19]. 

𝑷𝒄 = 𝑰𝟏
𝟐𝑹𝟏 + 𝑰𝟐

𝟐𝑹𝟐 (6) 

Leakage Losses: Power losses caused by leakage field are 

called leakage losses. They can be neglected because they 

are very small compared to iron and copper losses. 

Dielectric Loss: The losses occurring in the insulating 

materials of the transformer are called dielectric losses. 

Hysteresis Loss: Friction of magnetic fields in the core 

lamination create hysteresis losses. Hysteresis losses 

constitute 50% to 80% of the no-load running-in losses in 

transformers. They vary depending on the characteristics of 

the transformer core material. For example, the hysteresis 

losses of a transformer core with amorphous steel material 

are less than those of a transformer core with a normal core. 

Hysteresis losses (𝑷𝒉) occur in the form of heat as given in 

Equation 7 [18, 19].  

𝑷𝒉 = 𝑲𝜼𝑩𝑴𝒂𝒙
𝟏.𝟔 𝒇 𝒗 (𝑾𝒂𝒕𝒕) (7) 

Eddy Current Losses: The current generated by the 

voltage applied to the primary winding of the transformer 

produces a time-varying magnetization flux in the 

transformer core. This flux induces a voltage in the 

secondary winding and current flows through the circuit at 

the secondary winding end. Alternating flux also induces 

Electromotive Force (EMF) in the transformer core. EMF 

causing current to flow locally in the transformer core. This 

current, which does not contribute to the transformer output, 

is released as heat. Eddy current losses (𝑷𝒆) are given in 

Equation 8 [19]. Eddy current losses in the windings is 

numerically estimated by precisely determining the peak 

leakage flux density in the gap between the primary and 

secondary windings [20]. 

𝑷𝒆 = 𝑲𝒆𝑩𝒎
𝟐 𝒔𝟐𝒇𝟐𝑽 (𝑾𝒂𝒕t) (8) 

2.2. Flux Density and Fault Relationship in Transformers 

Magnetic flux density (𝐵) is a very important parameter in 

transformers. It represents the force acting per unit current 

per unit length on a wire placed at right angles to a magnetic 

field. In other words, it measures how densely magnetic field 

lines pass through a particular area. The flux density depends 

on the magnitude of the current, its frequency and the core 

properties. The flux density in a transformer refers to the 

magnetic field strength in its core. It is a critical parameter 

that affects the performance and behavior of the transformer. 

The relationship between magnetic flux density (B) and 

magnetic field density (𝐻) is expressed by Equation 9 [21, 

22]. 

 

𝐵 = 𝜇𝐻 (9) 

 

Excessive flux may occur in transformers due to increase 

in voltage or decrease in frequency, and the flux density 

significantly affects the core area. High flux density leads to 

increased hysteresis and eddy current losses. Overheating, 

mechanical stresses or insulation failure in the core can be 

hazardous to the magnetic circuit. This can result in reduced 

efficiency, increased losses, and potential hot spots within 

the transformer. Therefore, there is a relationship between 

flux density, transformer losses, and faults. Flux density 

causes losses, which in turn cause localized heating and 

ultimately cause faults. At the same time, faults in the 

transformer may affect the flux density, altering the leakage 

flux distribution.  This changes the leakage flux distribution. 

As a result, monitoring flux density changes is very 

important for fault detection [23-25]. 

Leakage flux-based methods are used in the literature for 

fault detection. These include vibration-based methods and 

search coil-based methods. In vibration-based methods, 

transformer vibrations are measured and compared with the 

normal situation to detect faults. In search coil-based 

methods, the voltage between the search coils is analyzed to 

detect leakage flux. These techniques are useful in detecting 

abnormalities in transformer windings, and experimental 

results in previous studies summarized in the introduction 

have demonstrated their effectiveness [13, 26, 27]. 

Detection of faults in transformers based on flux density 

changes is a research area. In this way, faults can be detected 

quickly, maintenance plans can be made accordingly, and 

early warning systems can be developed. 

 

 

2.3. FEA Simulation 

  
Figure 3. Block diagram of the FEA method 

FEA was developed between 1941 and 1942 by Russian-

Canadian Alexander Pavlovich Hrennikoff and German-

American mathematician Richard Courant. Since its 

development, FEA has become widespread and is still 

frequently used today. In this way, very difficult 
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mathematical problems can be solved easily and 

consistently. The finite element method solves physical 

problems using partial differential equations. In this study, 

the transformer shown in Figure 4 was designed by following 

the steps in the block diagram given in Figure 3. The 

transformer core exhibits non-linear behavior. Therefore, the 

leakage flux distribution of the transformer cannot be 

determined by mathematical calculations. In this context, it 

is easier to achieve more realistic results by 3D 

electromagnetic modeling of the transformer using ANSYS 

Maxwell software. The characteristics of the transformer 

designed using ANSYS Maxwell software are given in Table 

1. 

 

 

Figure 4. Transformer FEA modelling. 

Table 1. Technical specs of a distribution transformer for FEA 

modelling. 

Rated Power 2000 kVA 

Operational Frequency 50 Hz 

Rated Voltage 33/0.4 kV 

Connection Type Delta/Star (Dyn-0) 

Core Material SiFe (M4) 0.27 mm 

Core Stacking Factor 0.96 

Hysteresis Coefficient (Kh) 46.206 

Eddy Current Coefficient 

(Ke) 

0.2902 

Mass Density 7650 kg/m3 

Conductivity 1960000 S/m 

Primary Winding 1942 turns / AWG 

copper 

Secondary Winding 13 turns / Aluminum foil 

No-load Losses (Core 

Losses) 

3.2 kW 

Full-load Losses (Winding 

Losses) 

21 kW 

Full-Load Efficiency %98.8 

Cooling Type ONAF (Oil Natural Air 

Forced) 

Core Volume 0.218 m3 

Winding Volume 0.155 m3 

3. Dataset and Simulation Conditions 

We conducted simulations using a 34.5/0.4 kV, 2000 kVA 

power distribution transformer model in ANSYS Maxwell. 

The transformer was simulated under nominal operating 

conditions as well as under short circuit and voltage 

imbalance scenarios. The parameters chosen for the 

simulations, such as material properties, operating 

frequencies, and boundary conditions, were based on 

standard transformer designs and real-world operational 

conditions. The transformer core material was set to SiFe 

(M4), with the primary winding made of AWG copper and 

the secondary winding made of aluminum foil. These 

conditions reflect typical operating environments for 

industrial transformers, allowing us to model realistic flux 

distribution patterns. 

The dataset for the simulation was selected based on 

common fault scenarios in power distribution transformers, 

including healthy operation, short circuits, and voltage 

imbalances. These scenarios were chosen to cover a range of 

potential operational failures, allowing for a comprehensive 

analysis of how flux distribution patterns change under 

different conditions. Each scenario was simulated under the 

same environmental conditions to ensure that the results 

were directly comparable. 

4. Image Processing-Based Extraction of Flux 
Distribution 

Image processing covers all kinds of mathematical 

operations performed on image pixels for the purpose of 

extracting useful information, improving image quality, 

providing meaningful inferences from a large number of 

images or videos, etc.[28] Thanks to processes such as color 

spaces, transformations, filtering, edge detection, 

morphology, and thresholding applied to images, many 

different applications such as object detection, object 

tracking, activity detection, license plate detection, medical 

diagnoses, remote sensing, security and defense industry 

have become applicable with image processing [29, 30]. 

Image segmentation is a fundamental operation in almost 

all applications involving computer vision and image 

processing. Generally, in applications aimed at image 

enhancement and meaning, images are divided into multiple 

segments and objects. In this way, the object to be focused 

on in the image comes to the fore and is separated from other 

background components. Because of its importance, many 

image segmentation algorithms such as thresholding, region-

growing and watershed methods have been developed in the 

past literature [31]. Among various segmentation techniques 

available in the literature, thresholding-based segmentation 

is one of the most effective and simple approaches due to its 

lower computational cost and high efficiency. Therefore, 

image thresholding is one of the most used techniques to 

perform image segmentation [32]. With image thresholding, 

an appropriate threshold value is selected that separates the 

foreground from the background, and pixels below this value 

are segmented as background, and pixels above this value are 

segmented as foreground. Determining the threshold value is 
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an important problem [33]. The Otsu method [34], which 

enables automatic adjustment of the threshold value, is one 

of the most successful threshold determination techniques 

that selects a global threshold value by maximizing the 

separability of pixels in gray space images. After the Otsu 

algorithm, the image turns into a two-class or binary image 

(or pixels above the threshold value and pixels below the 

threshold value). With the Otsu algorithm, the threshold 

value that minimizes the intra-class variance and maximizes 

the inter-class variance is found [35, 36]. Using the Otsu 

method, information in the image histogram is used to 

determine the light intensity in the image and select a 

threshold value accordingly. Assuming that an image is 

represented at gray level 𝑳, the 𝑳 value for this image is a 

maximum of 255. If it is assumed that 𝒕  represents the 

threshold value, the histogram is divided into 𝒘𝟏  and 𝒘𝟐 

classes. This distinction can be expressed by the following 

equations. In Equation 10, 𝒑𝒊 shows the probability of each 

pixel according to its gray level value. 𝑵 refers to the total 

number of pixels. 𝒏𝒊 indicates the number of pixels at each 

level 𝒊 . According to the determined 𝒕  value, pixels are 

divided into two classes: those below the 𝒕 value and those 

above the 𝒕 value. The probability distributions for these two 

classes are as in Equation 11 and Equation 12. To calculate 

the variance between classes, class averages are found as in 

Equation 13 and Equation14. Equation 15 shows the inter-

class variance (σ). 𝒖𝑻 gray level is the total average of gray 

level pixels. Equation 16 is the within-class variance 

equation. With these variance equations, the optimal 𝒕 value 

that minimizes the intra-class variance and maximizes the 

inter-class variance is selected with Equation 17 [37]. 

𝑝𝑖 =  𝑛𝑖/𝑁 (𝑁 = 𝑛1 + 𝑛2 + 𝑛3 + ⋯ + 𝑛𝐿) (10) 

𝑤1 =  ∑ 𝑝𝑖

𝑡

𝑖=0

 (11) 

𝑤2 =  ∑ 𝑝𝑖

𝐿

𝑖=𝑡+1

 (12) 

𝑢1 =  ∑ 𝑖𝑝𝑖/𝑤1

𝑡

𝑖=0

 (13) 

𝑢2 =  ∑ 𝑖𝑝𝑖/𝑤2

𝐿

𝑖=𝑡+1

 (14) 

𝜎𝐵
2 = 𝑤1(𝑢1 − 𝑢𝑇)2 + 𝑤2(𝑢2 − 𝑢𝑇)2 

(𝑢𝑇=𝑤1𝑢1 + 𝑤2𝑢2) 
(15) 

𝜎𝑊
2 =  ∑ 𝑤𝑖/𝜎𝑖

2

2

𝑖=1

 (16) 

𝑡 =  𝑎𝑟𝑔{max(𝜎𝐵
2(𝑡))}= 𝑎𝑟𝑔{min(𝜎𝑊

2 (𝑡))}  
(0 ≤ 𝑡 ≤ 𝐿) 

(17) 

𝑡1, 𝑡2, 𝑡3, … =  𝑎𝑟𝑔{max(𝜎𝐵
2(𝑡1, 𝑡2, 𝑡3, … ))}=  

𝑎𝑟𝑔{min(𝜎𝑊
2 (𝑡1, 𝑡2, 𝑡3, … ))}  

(0 ≤ 𝑡 ≤ 𝐿) 

(18) 

 

In applications where the image contains more than two 

classes or segments, the Otsu method is easily extended to 

multi-level thresholding [38].  Considering that the threshold 

values (𝑡1, 𝑡2, 𝑡3, …) that divide the pixels in the image into 

𝑤1, 𝑤2, 𝑤3, … classes will be selected, Equation 12 can easily 

be converted to Equation 18. As can be understood, for 

multi-level thresholding, more than one threshold is 

determined and segmentation is applied to the image 

according to these threshold ranges [39]. 

In this application, image processing techniques were 

applied to transformer images with flux distribution in Tesla 

obtained through simulation from the ANSYS program. 

Transformer images showing the flux distribution in the 

transformer were obtained through the ANSYS program. 

The parameters used for the ANSYS simulation are shown 

in Table 1. The simulated transformer is designed in three 

different states: healthy, short circuit and voltage 

unbalanced. It is clearly seen in Figure 5 that the flux 

distributions are different for the three different cases. With 

the Otsu method and the Multilevel Otsu method explained 

between Equation 5 and Equation 13, the flux density in 

these images was determined, marked and a colorbar was 

created. Figure 5 shows the image processing steps applied 

to ANSYS images, respectively. First, the raw transformer 

images with flux distribution obtained as a result of the 

ANSYS program simulation were cropped so that only the 

transformer area remained. As seen in the cropped image, the 

effect created by the flux distributions is colored by the 

ANSYS program. The coloring in this process is generated 

based on the intensity variations of the flux distribution in 

the image. Since the flux distribution contains a wide range 

of values, it is essential to apply multi-level thresholding to 

effectively segment the image into distinct regions. Multi-

level thresholding divides the image into multiple segments, 

where each segment corresponds to a range of flux intensity 

values, allowing for a clearer distinction between areas with 

different flux concentrations. To achieve this, the Otsu 

method is utilized, which is known for automatically 

determining optimal threshold values by minimizing the 

intra-class variance of pixel intensities. First, the cropped 

image is converted into a grayscale format, simplifying the 

flux data into intensity levels that can be more easily 

processed. This grayscale image is then subjected to multi-

level thresholding. The number of thresholds, in this case, is 

set to 10, a value chosen based on the complexity and raw 

distribution of flux intensities in the original image. 
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Figure 5. Steps for creating flux distribution with multilevel thresholding. (First, raw images are cropped. Then, these images are 

converted from RGB to gray space. Finally, multilevel thresholding is applied.) 

 
Figure 6. Creating thermal behavior based on flux distribution. (Using the flux distribution of the raw images on the left, the images 

on the right, i.e. the thermal behavior, are extracted.)
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The 10 threshold values created through Otsu's method 

divide the image into 11 distinct regions, each 

corresponding to a different flux intensity range. These 

regions are then colored differently, with each color 

representing a specific range of flux values. This technique 

not only highlights the varying flux intensities but also 

enhances the visual interpretation of the distribution. By 

assigning unique colors to each thresholded region, it 

becomes easier to identify transitions in the flux, which are 

often crucial for analyzing phenomena like 

electromagnetic field distributions in transformers. 

Additionally, a color bar is included in the output image, 

serving as a reference that maps each color to its 

corresponding flux intensity value. In summary, this 

approach provides a comprehensive visualization of flux 

distribution by employing multi-level thresholding to 

segment and color the image, enhancing both 

interpretation and analysis of the transformer regions 

according to the flux intensity. 

These image processing operations were performed in 

MATLAB, utilizing the Image Processing Toolbox for 

image analysis and processing tasks. The multi-level 

thresholding was executed using the multithresh function, 

which applies Otsu's method to automatically determine 

the optimal threshold values. Based on the threshold 

values obtained, the imquantize function was used to 

segment the image into different regions, and each region 

was colored using the label2rgb function to reflect 

different levels of flux intensity. Finally, a color bar was 

added to the result image to display the flux distribution 

values corresponding to the colors in the image. 

5. Relationship Between Flux Distribution and 
Thermal Behavior of Transformer 

As a result of the simulations carried out in the study, 

images of the flux distributions of different error situations 

in the transformer core were obtained. The relationship 

between the flux values in these images and the thermal 

state of the transformer was then derived using the 

formulas given in Equations 19-23. Finally, the thermal 

behavior of the transformer core was developed and 

presented with image processing techniques. Based on 

these equations, thermal temperature values were derived 

from the flux distributions for the transformer under three 

different conditions. In this context, new images showing 

thermal temperature distributions were created from the 

simulation images in the ANSYS program, which were 

obtained for healthy, short circuit, and voltage unbalanced 

situations. A sample of each situation is shown as an 

example in Figure 6. 

 

𝐵𝑉(𝑇) =
2ℎ𝑣3

𝑐2

1

exp (
ℎ𝑣

𝑘𝑇
) − 1

 
(19) 

𝐵𝑅𝐽(𝑣, 𝑇) =
2𝑣2

𝑐2
𝑘𝑇 

(20) 

𝑇 =
𝜆2

2𝑘
𝐼𝑣 

(21) 

𝑑𝑣

𝑐
=

𝑑𝑣

𝑣
 

(22) 

∫ 𝑇 𝑑𝑣 =
𝜆3

2𝑘
 ∫ 𝐼𝑣  𝑑𝑣 

(23) 

6. Conclusion and Discussion 

In this study, images of the behavior of the flux 

distribution in the core of a power transformer with a 

nominal value of 34.5/0.4 kV and 2000 kVA, which is 

frequently used in the grid power distribution system, were 

obtained using FEA electromagnetic modeling software 

under nominal loading and operating conditions. The flux 

distribution was created for three different states of the 

transformer: Healthy, short circuit and voltage unbalanced. 

It has been observed that the flux distributions are different 

depending on the fault condition. Subsequently, the flux 

distribution was extracted from these images with the 

multi-level thresholding technique, which is one of the 

image processing techniques. Unlike the previous 

literature, thanks to an approach to visually examine the 

flux distributions in the transformer core under nominal 

operating conditions, distortions in the flux distributions in 

different fault situations can also be analyzed. Thus, in 

nominal operating conditions, the proposed method can be 

used as an image processing-based approach to evaluate 

the flux distribution for determining whether there is a 

problem with the transformer windings or operating 

conditions. Additionally, after the flux distribution in the 

transformer core is extracted using the proposed approach, 

the relationship between the flux distribution and the 

thermal behavior of the transformer core is examined. By 

converting flux distributions into thermal temperature 

values, the thermal state of the transformer and therefore 

fault detection can be performed.  

The results demonstrate that the proposed method is 

effective in visualizing the flux distribution and 

identifying thermal hot spots, particularly under fault 

conditions such as short circuits and voltage imbalances. 

The multi-level thresholding technique provided clear 

segmentation of flux intensity values, which were directly 

correlated with the transformer's thermal behavior. This 

method not only offers a reliable way to monitor flux 

distributions in real time but also allows for early fault 

detection by predicting potential overheating in the 

transformer core. 

The limitations of this study include the lack of 
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experimental validation and the use of only one 

transformer model. To address these, future work should 

involve testing the method on a wider variety of 

transformer designs and operational conditions. Moreover, 

integrating real-time sensor data with the FEA simulations 

would improve the model’s accuracy and make the method 

more applicable in industrial environments. Conducting 

additional experiments, such as real-time monitoring of 

transformers in the field, would provide a more 

comprehensive understanding of how flux distribution 

patterns and thermal behavior evolve over time in different 

scenarios. 

In future studies, the robustness of the proposed 

methodology can be further strengthened by applying it to 

a wider range of transformer datasets with varying power 

ratings, operating conditions, and fault scenarios. By 

analyzing multiple datasets, the generalizability of the 

method will be demonstrated, and the effectiveness of flux 

distribution analysis under different transformer 

configurations will be validated. Moreover, conducting 

additional experimental tests, such as real-time monitoring 

of transformers in industrial environments, could provide 

a more comprehensive understanding of the method's 

applicability in practical settings. These steps will help 

ensure that the method remains reliable across diverse 

operational conditions. 

Additionally, further research should focus on 

improving the accuracy of the mathematical models used 

to derive thermal behavior from flux density. The current 

models are based on certain assumptions and 

simplifications, such as uniform core material properties 

and idealized boundary conditions. Future work could 

explore more advanced modeling techniques that account 

for material heterogeneities, non-linear electromagnetic 

behavior, and real-world boundary effects. Integrating 

real-time data from sensors and developing adaptive 

models that learn from operational data could also enhance 

the accuracy and predictive power of the thermal analysis, 

making the method even more reliable for early fault 

detection.  

Finally, in future studies, remotely recorded online 

thermal images will be processed using advanced image 

processing techniques to more accurately determine the 

thermal behavior of transformers. These images will 

enable real-time monitoring of transformers under various 

operational conditions, allowing for the early detection of 

anomalies that could lead to overheating. By continuously 

analyzing the thermal data, it will be possible to identify 

patterns or irregularities associated with emerging faults, 

such as insulation deterioration or cooling system 

malfunctions. This approach will facilitate the 

development of predictive maintenance strategies, 

reducing the risk of unexpected transformer failures and 

extending their operational lifespan. 
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