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Abstract: In this article we study the retrospective inverse problem. The retrospective inverse problem consists of in the reconstruction of 

a priori unknown initial condition of the dynamic system from its known final condition. Existence and uniqueness of the solution is 

proved. 
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1. Introduction 

In this article we study the retrospective inverse problem. The 

retrospective Inverse problem consists of in the reconstruction of 

a priori unknown initial condition of the dynamic system from its 

known final condition. The direct problem of heat conductivity is 

well-posed; the inverse problem is not well-posed. In 

mathematics the vast majority of inverse problems set not well-

posed - small perturbations of the initial data (observations) can 

correspond to arbitrarily large perturbations of the solution. The 

French mathematician Jacques Hadamard in 1939 defined, the 

problem is called correct or well-posed problem if a solution 

exists, the solution is unique, the solution’s behavior hardly 

changes when there’s a slight change in the initial condition. If at 

least one of these three conditions is not fulfilled, problems are 

termed ill-posed or not well-posed. The most often in the case of 

ill-posed problems of the third condition are violated the 

condition of the stability of solutions. In this case, there is a 

paradoxical situation: the problem is mathematically generated, 

but the solution cannot be obtained by conventional methods. A 

classic example of ill-posed problem is retrospective problem for 

heat equation on the real axis. Mathematically retrospective 

problem leads to a Fredholm integral equation of the first kind: 
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in which 
ˆ ( )f x

- is the initial distribution of the temperature 

field, 
ˆ( , )u t x

- is the distribution of the fields in the moment of 

time t. As shown in [1], the solution of equation (1) expressed by 

the formula: 
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2. Problem Statement 

In the inverse problem of heat conductivity the initial distribution 

of sources is unknown. The initial distribution of sources 

generates the specified temperature distribution in an infinite 

piecewise-homogeneous rod In. Mathematical statement of the 

problem consists in finding a solution separatist system (n+1) 

equations of parabolic type 
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 - given real number, in which the 

condition of unlimited solvability of the problem considered 

fulfilled [2].  

The solution to problem (3)-(6) is of the form: 
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where ( , , ) , 1,..., 1ksH t x k s n   - influence function [2] 

of the mixed boundary value problem. 

Retrospectiveproblemfortheheatequationinthecaseofinfinitepiece

wise-homogeneous rod consists in the determination of the 

unknown initial distribution of sources ( )f x , which generates 

the specified temperature distribution ( , )u x  in the moment of 

time t  . 

3. Transformation operators 

Method of transformation operators is used to solve the problem 

[2]. Necessary definitions from [2]. The direct ˆ:J f f  f 

and inverse 
1 ˆ:J f f   transformation operators are set 

equalities: 
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Here 
*( , ), ( , )x x    -are the eigenfunctions of the direct 

and conjugate Sturm–Liouville problems for the Fourier operator 

in piecewise-homogeneous axis In. Eigenfunction 
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is a solution of the system of separate differential equations 
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Let for some   of the considered boundary value problems have 

nontrivial solutions 
*( , ), ( , )x x    , in this case the 

number   is called the eigenvalue, corresponding solutions 
*( , ), ( , )x x     - is called the eigenfunctions of the direct 

and conjugate Sturm–Liouville problems, respectively. In the 

further we shall adhere to the following normalization of 

eigenfunctions: 
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4. Analogues of the system the Hermite functions 
on piecewise-homogeneous real axis 

Let define analogues of the system the Hermite functions on 

piecewise-homogeneous real axis: 
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where jH - the system of the classical orthogonal Hermite 

functions [1]. 
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We change the integrals of places, we get: 
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5. Main result 

The problem of determining the initial distribution of the 

temperature field 
( )f x

 mathematically leads to the separate 

system of integral equations: 
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Method of transformation operators applicable to solving separate 

system of integral equations (8). 
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Proof . Let’s apply the transformation operator 
1J  to separate 

system of integral equations (8). As a result come to a model 

integral equation (1). Let’s apply the operator J  in both parts of 

the obtained equality (9); as a result, taking into account the 

continuity of the operator J , we find the unknown distribution of 

temperature: 
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from the definition of the operator conversion of J  the equality 

follows: 
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6. Power function with discontinuous coefficients 
and its application 

We consider the Fourier transform of the Delta function 
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Let’s define analog of the power function as follows 

.0
),(

)( 



 




k

k
kk

n

x
ix

 

We find equality from the definition of the transformation 

operators 
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The last equality means that the power function with 

discontinuous coefficients is obtained by the action of the 

transformation operator to the power function. 

Theorem 2. The ratio connects the generalized power function 

and differentiation 
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Proof. We have a chain of equalities 
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7. Retrospective problem for the system of the 
diffusion equations 

Let’s return to the solution of the separate system of integral 

equations (8) in space of the generalized functions S   
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We will convert the found solution. An analogue of the Taylor 

series for the function ),( u  is of the form 
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Let’s find the decomposition of the generalized Taylor series for 

eigenfunction from definition of the generalized power function 

 

 

 

Let’s substitute this decomposition in a formula (11) and let’s 

integrate term by term. We come to the formula (12) in which 
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Let’s substitute decomposition of eigenfunction ),(  x  in the 

generalized power series in a formula (10) we will receive 
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where designation is accepted 
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Thus, the solution of the retrospective problem (10) is obtained. 

Remark 1. The generating function for the )(xH jn  is the form 






 
0

.
!

)(
),(

2

j

jjn

j

xH
ixe 

 

Corollary 1. If to choose 

,),(,1,
2

1 xiexnt  
 

then we obtain 









0

12

1

,
!

)(2

j

jjx

j

xH
ee 



 

functions )(1 xH j -are the classical Hermite polynomials. 

8. Retrospective problem for fractal systems of 
diffusion equations 

Retrospective problem for fractal system of diffusion equations in 

the space of generalized functions S   leads to the separatist 

system of integral equations: 
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where )(1, zE - the Mittag-Leffler function [9]. 

We get the solution of the fractal retrospective problem repeating 
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You can find the generating functions for )(xH jn : 
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We find the explicit expression for the functions )(xH jn . We 

find decomposition of the left part of the formula (15) in the 

Taylor series 
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We get the expression, comparing the two views 
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If 1n , the formula takes the form 
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Define a "fractal" generalization of the Hermite polynomials 
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then the solution of the fractal retrospective problem has the form 
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Corollary 2. In the hyperbolic case 1,2  n  the solution 

of the retrospective problem has the form 
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Proof. We replace   for i  in formula (16) for the solution of 

the direct problem. As a result, we get the formula  
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We use the formula (15) 
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In the end we find the solution of the Cauchy problem for the 

hyperbolic equation 
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Remark. If, as an example, take
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9. The inverse dirichlet problem for a half-plane 

Solution of the inverse Dirichlet problem for the right half-plane 

has the form: 
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Let’s repeat the above reasoning. Let’s receive expressions for 

analogues of Hermite polynomials: 
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As a result for the solution of the inverse Dirichlet problem we 

receive the representation in the form of the sum of the Taylor 

series: 

.
2

)()(

!

)0,(
)(

0









j

jjj liyliy

j

lu
yf

 

Corollary 3. If the function )( yf  admit continued with the real 

axis of the complex plane as a whole, the 
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Example 2. Let

22)(),( ylxyxu 
, then 
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  therefore, we find 
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10. Conclusion 

In this article the formal solution of the retrospective problem is 

provided. The third aspect in determining the well-posed problem 

is not taken into account. Theorem of existence and uniqueness of 

solution are given. From the analysis of the formula (9): the 

solution of the retrospective heat problem with discontinuous 

coefficients is received by replacement in the final result of the 

Hermite functions [1] on the Hermite functions with 

discontinuous coefficients, defined in the article. The derivatives 

)0(ˆ ju  are necessary to replace on
)(uDn . The noticed 

analogy allows hoping on the possibility of obtaining the solution 

of problems of mathematical physics in which the Hermite 

functions with discontinuous coefficients. 
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