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1. Introduction 

The linear complexity of a sequence is an important characteristic 

of its quality. It is defined to be the length of the shortest linear 

feedback shift register that can generate the sequence. Sequences 

with high linear complexity and good autocorrelation properties 

are the useful tools in cryptography and other practical 

applications (see [2], [10], [12]). 

The sequences of period pq  (here p  and q  are distinct odd 

primes), constructed on Whiteman's generalized cyclotomic 

classes have been the subject of the research in series of works, 

take for example binary sequences ( [13], [11], [8] and references 

therein) or m -phase over simple Galois field ([4]). A general 

approach to construction and determination of the linear 

complexity of sequences based on cosets was proposed in [3]; 

here the linear complexity also was derived over the finite field. 

As noted in [7], an alternative approach is to adopt the algorithm 

described by Reeds and Sloane [11], which performs a similar 

task to the Berlekamp-Massey algorithm but operates directly 

with the integers modulo m , i.e. over the finite ring m . In this 

paper, we explore the linear complexity over the ring 4  and 

periodic autocorrelation function of the quaternary sequences 

based on Whiteman's generalized cyclotomic classes of order 

four. 

Let p  and q  be distinct odd primes and pqN = . Suppose 

4=1)1,(gcd  qp  and 1)/41)((=  qpR . By Chinese 

reminder theorem there exists a common primitive root g  of 

both p  and q . The multiplicative order of g  modulo N  is 

equal R . 

 

We define Whiteman's generalized cyclotomic classes analogous 

to [17]:  

0,1,2,3,=1},,0,=:{= jRl
j

y
l

gjH   

where ). mod1(), mod(: qypgyy   Define 

}1)(,,,2{= pqppP   and }.1)(,,,2{= qpqqQ   Then 

we get  

{0}.
3
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3

0=
=

*
 QPkH

k
NZkH

k
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Let {0}.=0 QQ  Define a quaternary sequence as follows:  
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Such sequences are also called coset sequences [3] or index 

sequences [6]. Our purpose is to examine the linear complexity 

and autocorrelation function of }{ ju . Unlike above mentioned 

studies ([4], [3]), we consider the linear complexity of sequence 

over the ring 4 , not over the finite field. 

2. Linear Complexity 

A polynomial 1( ) =1 ... m

mC x c x c x   , 4( ) [ ]C x x  is called 

an associated connection polynomial of periodic sequence { }ju  

over 4 , if coefficients 1 2, ,..., mc c c  satisfy 

1 1 2 2= ... ,t t t m t mu c u c u c u t m        . The linear complexity 

of periodic sequence { }iu  over 4  is equal to  

= min{deg ( ) | ( )L C x C x is an associated connection polynomial 

of{ }}.ju  

Also, we can define L  as the degree of the minimal polynomial. 

It shown in [16] that ( )C x  is an associated connection 
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polynomial of { }ju  if and only if  

 ( ) ( ) 0 mod( 1) ,NU x C x x     (2) 

where 1

0 1 1( ) = ... N

NU x u u x u x 

   . 

Let r  be the order of 2 modulo pq , and let 
2 2= (2 ,2 )rR GF  be 

a Galois ring of characteristic 4 . The maximal ideal of the ring 

R  is 2R  [15]. The group of invertible elements 
* = \ 2R R R  of 

the ring R  contains the cyclic subgroup of order 2 1r   [15]. 

Hence, there exists an element   of order pq  in *R . Then, 

2 11 = 0pq        and  

 2 ( 1) 2 ( 1)1 = 0, 1 = 0.q q p q p p q p               

From the last equalities we can easily deduce the following well-

known (see [9] or [4]) assertions: 

Lemma 1.1[4] 

(i) If *

Na , then * =1ja

j
N


  and = = 1,ja ja

j P j P
 

 
   

(ii) If a P , then = ( 1) / 4ja

j H
k

p


   and = 1,ja

j P



  

(iii) If a Q , then = ( 1) / 4ja

j H
k

q


   and = 1.ja

j Q



  

Here we introduce auxiliary polynomials 

( ) = , = 0,1,2,3f

j f H
j

S x x j
  and 

2

= , = 0,1
l

h

l h H H
l

T x l
  . 

Then 2( ) = ( ) ( )l l lT x S x S x  for = 0,1l . By Lemma 1 we have  

0 1 2 3 0 1( ) ( ) ( ) ( ) =1, ( ) ( ) =1S S S S T T          (3) 

Put, by definition 
3

=0
( ) = ( )jj

S x jS x . Then, by Lemma 1 we 

have ( ) = ( ) 1a aU S   , if *

pqa . 

The next assertion is similar to Lemma 6 from [4] for the simple 

field. 

Lemma 2.2 

(i) ( ) = ( )a

j j kS S 
, if ka H , = 0,1,2,3;j = 0,1,2,3.k  

Indices are counted modulo 4 . 

(ii) ( ) = ( )aS S k   , if ka H , = 0,1,2,3k .   

Proof. (i) If ka H , then = k

k jaH y H , i.e., ( )mod 4=k j kaH H  . 

This proves the first assertion. 

(ii) By definition 
3

=0
( ) = ( )a a

jj
S jS  , therefore 

3

=0
( ) = ( )a

j kj
S jS  . Hence, 

3

=0
( ) = ( ) ( )a

jj
S S k S    . 

Now applying equality (3), we conclude the proof of Lemma 2.  

So, if 4( )S    then *|{ | ( ) = 0 and }|= 0v

pqv U v  , and 

*|{ | ( ) = 0 and }|= ( 1)( 1) / 4v

pqv U v p q     for 

( ) / 4 .S    

Further, here we have the natural epimorphism of the rings R  

and = / 2R R R . Let b  denote the image of the element b R  

under this epimorphism. 

As we already mentioned in the introduction, the linear 

complexity of these sequences over the simple field was 

examined in [4]. Since under the epimorphism we have the 

sequence over the field (2)GF , and by [4] we obtain 

1 2( ) = ( )S T    if and only if 0 22 .H H   In [8] it was 

shown that 0 22 H H   if and only if 5(mod 8)p q  . 

Suppose 2= , = 0,1.l l lD H H l  The following statement is a 

generalization of Theorem 1 from [5].   

Lemma 3.3 Let 5(mod 8)p q  . Then 

 2

0 2 0 2 1( ( )) = (0,0) ( ) (0,1) ( ),T T T    

where 2 0 0(0,0) =| ( 1) |D D   and 2 0 1(0,1) =| ( 1) |D D   are 

generalized cyclotomic numbers of order 2.   

Proof. By the definition of auxiliary polynomial we have 
2

0 ,
0

( ( )) = w u

w u D
T   

  or, to put it another way,  

2 ( 1)

0

,
0

( ( )) = .u t

u t D

D   



   (4) 

 As it is shown in [8], if 5(mod 8)p q   then 01 .D   By 

definition 0D  contains ( 1) / 2 1q   elements t  such that 

1 0(mod )t p   and 1t   . For every t  by Lemma 1
( 1)

,
0

= ( 1) / 2.u t

u t D
p 


   Continuing this line of reasoning for 

q , we get  

( 1)

*, ,( 1)
0

1 1 1 1
= 1 1

2 2 2 2

( 1)( 1)
= 0.

2

u t

u t D t
pq

p q q p

p q

 

  

      
        
   

 


 

Thus, by (4) we have  

 2

0 0 0 0 0 1 1( ( )) =| ( 1) | ( ) | ( 1) | ( ).T D D T D D T          

 The assertion of Lemma 3 follows from the last equation.  

 Lemma 3 allows to determine ( ), = 0,1lT l  in R .   

Lemma 4.4 4( ) , = 0,1lT l  if and only if 02 .D  

Proof. If 4( ) , = 0,1lT l   then 
2( )lT   , In this case, as we 

already noted, 0 0 22 =D H H  [8]. 

Conversely, let 02 D , then 5(mod 8)p q  [8]. Denote 0 ( )T   

by z . By Lemma 3 and (3) we obtain 2

2 2= (0,0) (0,1) (1 )z z z   

or 2

2(0,0) 1= 0z z   . In the given case 

2 2 2(0,0) = (( 2)( 2) 3) / 4, (0,1) = (0,0) 1p q    [17] and 

= 5 8 , = 5 8 , , .p a q b a b    So, 
2 2( 1) = 0z z a b    , then 

{0,1}z , if 1(mod 2)a b   or {2,3}z  for 0(mod 2)a b  .  

 Now, we generalize Lemma 3 by using Lemma 4.   

Lemma 5.5 4( )S   if and only if 02 .H  

Proof. First, we note that  

1 2 3( ) = ( ) 2( ( ) ( )).S x T x S x S x   (5) 

Let 4( )S   . Then 0 22 H H   and by Lemma 4 1 4( )T   , 

consequently 2 3 42( ( ) ( )) 2S S   . 

Suppose 22 H . In this case by Lemma 1 we have 

2 2

2 3 0 1( ) ( ) = ( ) ( )S S S S     . Hence, by (3) we obtain in R :  

 
2

2 3 2 3( ) ( ) = ( ) ( ) 1.S S S S       

 Thus, 
2 3 2( ) ( )S S   , we get a contradiction. 

Let 02 H . Then by Lemma 4 1 4( )T    and by Lemma 1

2 3 2( ) ( )S S   . Then, by (5) we obtain 4( )S   .  

Remark. Employing the procedure proposed in [5] and 

generalized for Whiteman's cyclotomic classes in [8], and using 

cyclotomic numbers of order four, we can derive the equations 

for ( ), = 0,1,2,3jS j  and prove Lemma 5 by direct 

computation. 



By the choice of   we have an expansion 
1

=1
( 1) / ( 1) = ( )

pqpq i

i
x x x 


    then 

1

=1
= (1 )

pq i

i
pq 


  . So, 

*j l R    when , = 0,..., 1,j l pq j l  . Therefore, if 

,j j J   are the roots of the polynomial then this polynomial is 

divisible in R  by ( )j

j J
x 


 . 

Theorem 1.6 Let the sequence { }tu be defined by (1). Then 

(1) = 1L pq q   if 5(mod 8)p q   and 02 H , 

(2) = ( 3)( 1) / 4L pq p q    if 5(mod 8)p q   and 02 H , 

(3) = 2L pq p q    if 1(mod 8)p   and 5(mod 8)q  , 

(4) =L pq  if 5(mod 8)p   and 1(mod 8)q  ,   

Proof. By definition of sequences { }ju  and by Lemma 1, in 4  

we have (1) = 3U , ( ) = ( 1) / 2bU p  , if b P  and 

( ) = ( 1) / 2 2bU q   , if .b Q  

Let 5(mod 8)p q   and 02 H . Then by Lemma 2 and 

Lemma 5 ( ) 0cU   , if * {0}pqc P    and ( ) = 0bU  , if 

.b Q  

Suppose ( ) = ( )j

j Q
Q x x 


  and choose 

 ( ) = 1 / ( )pqC x x Q x . Then all the roots of 1pqx   are the roots 

of ( ) ( )U x C x . Hence, by (2) ( )C x  is an associated connection 

polynomial of { }ju  and 1L pq p   . If 1L pq p   , then 

there exists another associated connection polynomial 1( )C x  of 

sequence { }ju  with degree less than 1pq p  . Hence, 

1( ) ( ) = 0v vC S   for = 0,1, , 1v pq . Since ( ) 0cU   , if 

* {0}pqc P   , then we obtain that 12 ( ) = 0vC   for 

* {0}pqv P    and 12 ( ) 0C x   by definition of an associated 

connection polynomial. Thus, 12 ( )C x  is divisible by 

 * {0}
j

j
pq

xP 


  , which contradicts to the fact that the 

degree of 12 ( )C x  is less than 1pq p  . Therefore, 

= 1L pq p  . This completes the proof of the first statement of 

the Theorem 1. 

Let 5(mod 8)p q   and 02 H . Then by Lemma 2 and 

Lemma 5 there exist : 0 3k k   and ( ) = 0bU  , if kb H Q   

and ( ) 0cU   , if *( \ ) {0}pq kс H P   . Here choose 

 ( ) = 1 / ( ( ) ( )),pqC x x Q x H x  where ( ) = ( )j

j H
k

H x x 


 . If 

02 H  then 4( ) [ ]H x x . Continuing the line of argument as in 

the first case we obtain = ( 3)( 1) / 4L pq p q   . 

The rest two statements of Theorem 1 we prove in the same way.  

  Theorem 1 shows that the sequences { }ju  defined by (1) have 

high linear complexity over the ring 4v . Changing the values 

of { }ju  when 0j P Q   does not substantially influence the 

process and the result of the analysis. 

3. Autocorrelation 

The autocorrelation of an N -periodic sequence { }ju  over 4  is 

the complex-valued function defined by 
1

=0
( ) = ,

N u u
n n w

n
R w i

 
  

where = 1i   is an imaginary unit. The autocorrelation 

measures the amount of similarity between the sequence { }ju  

and a shift of { }ju  by w  positions. Here we derive the 

autocorrelation function by well-known procedure, which is 

based on cyclotomic numbers (see for example [2]). 

Consider the complex sequence constructed from sequence of ju

, i.e., wherein = .
u

j

ja i  Then, the periodic autocorrelation 

function at shift w  of { }ju  is given by  

1
*

=0

( ) = ,
N

j j w

j

R w a a


   (6) 

where *

ja  is the complex conjugate of ja . 

Let the difference function be defined as  

( , ) =| ( ) |,wd C B C B w  where B w  denotes the set 

{ : }w b b B   and " "  denotes addition modulo N . 

Let jc  and jb  be the characteristic sequences of C  and B , 

respectively, i.e.,  

1, if mod , 1, if mod ,
= =

0, otherwise. 0, otherwise.
j j

j N C j N B
c b

  
 
 

 

 Then,  

1

=0

= ( , ).
N

j j w w

j

c b d C B


   (7) 

 Hence, by (6) and (7), we can deduce the autocorrelation 

function from the difference functions 0 0 1 1( , ), ( , )w wd H H d H H  

and so on. 

To derive difference functions we will need cyclotomic numbers. 

Recall that the cyclotomic numbers of order 4 in this case are 

defined as [17] ( , ) =| ( 1) |i ji j H H   for all , = 0,1,2,3.i j  

Lemma 6.7 If , = 0,1,2,3,kw H k  then 

( , ) = ( , )w j ld H H k l j l   for all , = 0,1,2,3.j l  

Proof. Since 1 1| ( ) |=| ( 1) |j l j lH H w w H w H      and 

1

( )mod 4=l l kw H H


, then ( , ) = ( , )w j ld H H l k j k  . By [17]

( , ) = ( , )m n m n m  , and Lemma 6 is proved.  

Lemma 7.8If , = 0,1,2,3,kw H k  and = 0,1,2,3,j  then 

1) 

( 5) / 4, if = and 5 (mod 8)

( , ) = or 2 (mod 4) and 4 (mod 8),

( 1) / 4, otherwise.

w j

q j k p q

d P H j k p q

q

  


   
 

 

2)  

( 5) / 4, if = ,
( , ) =

( 1) / 4, otherwise.
w j

q j k
d H P

q





 

3) 0 0( , ) = ( , ) = ( 1) / 4.w j w jd Q H d H Q q  

4) 0 0( , ) = ( , ) =1.w wd Q P d P Q  

Proof. Note that 01 H   for 5 (mod 8)p q   and 21 H   for 

4 (mod 8)p q   (see [8], Lemma 3.3). Then kw H   if 

5 (mod 8)p q   and 2kw H    if 4 (mod 8)p q  . 

Therefore, 0 ( )jH w  , if =k j  and 5 (mod 8)p q   or 

2 (mod 4)j k   and 4 (mod 8)p q  . 

Now, if ju H  and kw H , then 

= , = , 0 , 1.a j b ku g y w g y a b R    Hence, we have 

 (mod ).a j b ku w g g p     Consequently, 0 (mod )u w p   if 
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and only if ( 1) / 2 (mod ( 1)).a j b k p p       Whence 

0 1a R   , then the last congruence has ( 1) / 4q  solutions. 

The case = 0u w  was investigated in the beginning of the 

proof. The first assertion of Lemma 7 is proved. The proof of the 

rest is similar.  

 The following Lemma was proved in [17]. 

Lemma 8.9[17] If w P Q   then 

( 1)( 1) /16, if ,

( , ) = ( 1)( 5) /16, if = and ,

( 5)( 5) /16, if = and .

w j l

p q j l

d H H p q j l w P

p q j l w Q

  


  
   

 

 Lemmas 9 and 10 are proved similar to Lemma 8.   

Lemma 9.10If w P  then 

1) ( , ) = ( , ) = 0w j w jd P H d H P  for all = 0,1,2,3j , 

2) 0 0( , ) = ( , ) = ( 1) / 4,w j w jd H Q d Q H p  

3) ( , ) = 2,wd P P q  

4) 0 0( , ) = ( , ) =1.w wd Q P d P Q  

Lemma 10.11If w Q  then 

1) 0 0( , ) = ( , ) = 0w j w jd Q H d H Q  for all = 0,1,2,3j , 

2) ( , ) = ( , ) = ( 1) / 4,w j w jd H P d P H q  

3) 0 0( , ) = ,wd Q Q p  

4) 0 0( , ) = ( , ) = 0.w wd Q P d P Q  

 Now we will prove the main theorem of this section.   

Theorem 2.12Let the sequence { }ju  be defined by (1). 

(i) if 4 (mod 8)p q   then  

0

2

1 3

, if = 0,

1 2 , if ,

1 2 , if ,
( ) =

1, if ,

3, if ,

1, if .

pq w

i w H

i w H
R w

w H H

p q w P

p q w Q


   

   


  
   


  

 

(ii) if 5 (m d 8)p q o   then  

0 2

1

3

, if = 0,

1, if ,

3, if ,
( ) =

1, if ,

3, if ,

1, if .

pq w

w H H

w H
R w

w H

p q w P

p q w Q


   

  



   


  

 

 

Proof. By (6) and (7) from (1) we have the following equations 

for real (Re ( ))R w  and imaginary (Im ( ))R w  parts of the 

autocorrelation function ( )R w :  

0 0 1 1 2 2

3 0 3 0 0 2 2 0

1 3 0 3 0 1

Re ( ) = ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ),

w w w

w w w

w w

R w d H H d H P H P d H H

d H Q H Q d H H d H H

d H P H Q d H Q H P

   

    

     

 (8) 

 and  

1 0 3 0 2 0 3 0

2 1 1 2 3 0 0

0 1 2 3 0

Im ( ) = ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )

w w w

w w w

w w

R w d H P H d H Q H d H H Q

d H H P d H P H d H Q H

d H H P d H H Q

    

     

   

 (9) 

We consider few cases. 

1) Let , = 0,1,2,3kw H k . By Lemma 7 in this variant we obtain  

3 0 0 3 1 0 0 1

0 0

( , ) ( , ) ( , ) ( , ) =

0, ( , ) ( , ) = 2

w w w w

w w

d H Q d Q H d H Q d Q H

d P Q d Q P

  


 

and  

1 1 3 3( , ) ( , ) ( , ) ( , ) =

0, if 4 (mod 8)

or = 0,2 and 5 (mod 8),

2, if =1 and 5 (mod 8),

2, if = 3 and 5 (mod 8).

w w w wd H P d P H d H P d P H

p q

k p q

k p q

k p q

  

 


 


  
  

 

 Hence, by Lemma 6 we have from (8) 

Re ( ) = ( ,0) ( 1,0) ( 2,0) ( 3,0) ( ,2)

( 2,2) ( 1,2) ( 3,2) 2.

R w h h h h h

h h h

      

      
 

 It is shown [17] that  
3

=0

( ,0) ( ,2) =1,
k

k k  

 hence  

1, if 4 (mod 8)

or = 0,2 and 5 (mod 8),
Re ( ) =

3, if =1 and 5 (mod 8),

1, if = 3 and 5 (mod 8).

p q

k p q
R w

k p q

k p q

  


 


  
  

 

Similarly we obtain from (9) that the imaginary part of ( )R w  is 

equal  
3

0 0 2 0 0

=0

2 2 0 0 0 2 0

Im ( ) = ( ,1) ( ,3) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ).

w w w

k

w w w w w

R w k k d P H d Q H d H Q

d H P d P H d Q H d H P d H Q

   

    


 

 Here the difference of cyclotomic numbers equals zero. 

Therefore, by Lemma 7 we obtain the following: If 

4 (mod 8)p q   then 

0

2

1 3

2, if ,

Im ( ) = 2, if ,

0, if .

w H

R w w H

w H H



 

  

; If 

5 (mod 8)p q   then Im ( ) = 0R w . 

2) Let w P . As above, by Lemmas 8, 9 and 10 we have  

( 1)( 5) ( 1)( 1)
Re ( ) = 4 2 2 = 3

16 16

p q p q
R w q p q

    
       

 

and Im ( ) = 0.R w  

3) Let w Q . Here ( ) = 1R w p q  . Theorem 2 is proved.  

 Corollary. If = 4q p , then 0max | ( ) |= 3w R w . Thus, the 

autocorrelation properties of examined quaternary sequences are 

the same as of quaternary sequences of period pq  from [14] but 

our sequences are significantly more well-balanced. 

4.Conclusion 

In this paper we showed that the quaternary sequences based on 

Whiteman’s generalized cyclotomic classes of order four have 

high linear complexity over Z4. We derived the periodic 

autocorrelation function of these sequences. The examined 

sequences have satisfactory autocorrelation properties if p and q 

are close. Large linear complexity and small autocorrelation are 

desirable features for sequences used in applications like 

cryptology and other. 
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