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Abstract: In this paper we consider boundary value problems with singularity in equation or solution. To solve these problems, we apply 

single exponential and double exponential transformations of sinc-Galerkin and Chebyshev cardinal functions. Numerical examples 

highlight efficiency of Chebyshev cardinal functions and sinc-Galerkin method in problems with singularity in equations. It is illustrated 

that in problems with singular solutions, Chebyshev cardinal functions is not applicable. However, sinc-Galerkin method overcomes to 

this difficultly. 
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1. Introduction 

The sinc method is a highly efficient numerical method that has 

been developed by Frank Stenger, the pioneer of this field, and 

his colleagues [1, 2], it is widely used in various fields of 

numerical analysis, solution of integral, ordinary differential and 

partial differential equations [3-13]. Sinc-Galerkin is one of the 

sinc methods that used in this paper for solving boundary value 

problems with singular solutions. Despite most of the numerical 

methods, sinc-Galerkin method comprehends problems that have 

singular solutions. Conventional form of these methods is SE 

transformation. There are several advantages to using 

approximations based on sinc numerical methods. First, unlike 

most numerical techniques, it is now well-established that they 

are characterized by exponentially decaying errors [17]. Second, 

they are highly efficient and adaptable in handling problems with 

singularities [18]. Finally, due to their rapid convergence, sinc 

numerical methods do not suffer from the common instability 

problems associated with other numerical methods [19]. 

 Takahasi and Mori [9] proposed the double exponential 

transformation for one dimensional numerical integration in 

1974. The effectiveness of the DE transformation technique in 

numerical integration naturally suggests that the DE 

transformation technique could be useful in other numerical 

methods. In 1997, Sugihara [10] established the “meta-

optimality” of the DE formula in a mathematically rigorous 

manner, and since then it has turned out that the DE 

transformation is also useful for other various kinds of numerical 

methods. Indeed, it has been demonstrated in [11-14] that, the use 

of the sinc method incorporated with the DE transformation gives 

highly efficient numerical methods for functions approximation, 

indefinite numerical integration, and the solution of differential 

equations.  

Interpolate approximate base function have received considerable 

attention in dealing with various problems. The main 

characteristic behind the approach using this technique is that it 

reduces these problems to those of solving a system of algebraic 

equations thus greatly simplifying the problem. In this paper, a 

Chebyshev cardinal function is used for numerical solution of 

differential equations, with the goal of obtaining efficient 

computational solutions. Several papers have appeared in the 

literature concerned with the application of Chebyshev cardinal 

functions [24-29]. 

Some of important applicable problems have singularity in their 

solutions. Modeling of demotion of a rigid body around a fixed 

point redounds the Kowaleveski equation that has singularity in 

solution. The Lorenz model of atmospheric circulation is another 

example of differential equations with singular solution [20]. The 

Painlve equations that appear in several applications such as 

statistical mechanics, random matrix models, plasma physics, 

nonlinear waves, have singularity in their solutions [21]. In 

solving problems with singular solutions numerical methods 

often cannot pass singular point with successfully. 

In this article we apply the DE and SE transformation sinc-

Galerkin method and Chebyshev cardinal functions to solve 

boundary-value problems: 

L(y)=p(x)y"+q(x)y'+u(x)y=f(x,y)   (1) 

y(a)=y(b)=0 

Where p(x),q(x),u(x)  and f(x,y), are analytic functions. In (1), it 

is possible p(x) has zeros in (a,b), or solution y(x) has singularity 

on (a,b). It is shown that, proposed methods are applicable and in 

second case only SE and DE sinc-Galerkin methods overcomes 

on the singular points difficultly but DE transformation sinc-

Galerkin method is more accurate and Chebyshev cardinal 

functions method is not suitable for solving our problems in the 
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second case. 

2. Chebyshev Cardinal Functions 

In this section, we first present a brief review of the Chebyshev 

cardinal functions for solving differential equations. Chebyshev 

cardinal functions of order N in [-1,1] are defined as [29]: 

 
 
( )  

    ( )

    (  )(  –   )
                       (2) 

where     ( ) is the first kind Chebyshev function of order 

    in [    ] defined by     ( )      ((   

  )      ( ))  subscript   denotes  -differentiation and      
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   ((   –   ) (      ))                 . We change the 

variable   (   )    to use these functions on [   ]. Now 

any function  ( ) on [   ] can be approximated as 
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2.1 The Operational Matrix of Derivative 

The differentiation of vector   ( )  in (4) can be expressed as 
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where D is (   )  (   ) operational matrix of derivative 
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3. Sinc Bases, SE and DE Transformations  

Sinc function is demonstrated on        by  

    ( )  {
   (  )

  
                 

                            
   (8) 

This function is translated with evenly spaced nodes are given as 

 (   )( )      (
    

 
)             ,      (9) 

If  ( ) is analytic on a strip domain 

|   |         (10) 

in the z-plane and | ( )|    as      then, the series 

 (   )  ∑  (  ) 
        (

    

 
)    (11) 

converges, we call it whittaker cardinal expansion. 

If  ( ) be a real function, sinc expansion (11) is defined on 

      , while the equation that we want to solve is defined 

     , and hence we need some transformation which the 

given interval transform on to 

      . In many of applications of the sinc 

method transformation 
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The   is the mesh size in    for the uniform grids         
   . The base functions on (   ) are given by 
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The sinc grid points   (   ) in    will be denoted by   because 

they are real. The inverse images of the equispaced grids in SE 

transformation are 
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In DE transformation, we can use 

   ( )      (
 

 
   (

   

   
)  √(

 

 
   (

   

   
))    ) (19) 

     ( )   ( )  
   

 
   (

 

 
     ( ))  

   

 
,  (20) 

which Takahasi and Mori proposed for numerical integration [9]. 

One of the best reasons for using (20) is optimality of this 

transformation. It usually gives significantly faster convergence 

than (18) [9, 10 and 15]. 

Definition 1 Let   be a simply-connected domain which 

satisfies (   )   , and let     be positive constants. Then 

    ( ) denotes the family of all functions   that satisfy the 

following conditions: (i)   is analytic in  ; (ii) there exists a 

constant C such that   

| ( )|   |   | |   |      (21) 

holds for all   in  . For later convenience, let us denote   ( )  

    ( ) and introduce a function  

 ( )  (   )(   ). If 
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 when     (    
  (  )) for some positive constants   and  , 

the next theorem guarantees the exponential convergence of the 

SE-sinc approximation. 

Theorem 1 Let     (    
  (  )) for   with          Let 

also   be a positive integer, and   be given by (15), Then there 

exists a constant   independent of  , such that 
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Proof: Ref [1]. 

In DE transformation, if 

    
  (  )  

{   |    (
 

 
   (

   

   
)  √(

 

 
   (

   

   
))   )   } (24) 

and     (    
  (  )) we have: 

Theorem 2 Let     (    
  (  )) for   with        , let 

  be a positive integer, and let   be selected by the formula  
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Then there exists a constant   which is independent of  , such 

that 
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Proof: Ref [22, 23]. 

By comparing (23) and (26) it is observed that 

convergence by the DE transformation as   become large is 

much faster than that by SE transformation. In fact it is proved 

that DE sinc approximation is optimal in some sense in the 

approximation [14, 15].  

For solving problem (1) with sinc methods, we need a lemma.  

Lemma 1 Let   be the conformal one-to-one mapping of the 

simply connected domain    to    Given by (13). Then 
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Proof: Ref [1]. 

3.1 Sinc-Galerkin Method 

In linear problem we have 

 ( )   ( )    ( )    ( )   ( )    (30) 

 ( )   ( )     

We consider (30) and its approximation solution by 
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                 ,  (31) 
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Theorem 3. The following relations hold 
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Proof: Ref [16]. 

If use theorem 3 for replacing in inner product (32) we obtain 

following theorem: 

Theorem 4 If the assumed approximate solution of the boundary-

value problem (30) is (31), then the discrete sinc-Galerkin system 

for the determination of the unknown coefficients    is given by 
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We can rewrite (38) in following system: 
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Proof: Ref [3, 16]. 

By solving the obtained algebraic linear system, the vector   and 

so the approximation solution is determined. 

Now we consider nonlinear boundary value problem 

 ( )   ( )    ( )    ( )   ( )    ( )  (40) 

 ( )   ( )     
If (31) be a approximation solution of (40), the unknown 

coefficients    is determined that  
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Lemma 2 we have 
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Proof: Reff [3,16]. 

If use theorem 3 and lemma 2 for replacing in inner product (41) 

we obtain following theorem: 

Theorem 5 If the assumed approximate solution of the boundary-

value problem (40) be (31), then the discrete sinc-Galerkin 

system for the determination of the unknown coefficients    is 

given by 

∑ (∑
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We can rewrite (42) in following system: 

             (43) 

where    (
  

  
)     (

  

  
)    and   is given by (39). For 

solving nonlinear system (40), we can use Newton s method. 

4. Numerical Examples 

Here we present some examples that are solved by DE and SE 

sinc-Galerkin methods and Chebyshev cardinal functions. These 

examples have singular point in equations or solutions. 

Comparisons show that Chebyshev cardinal functions is a good 

method for solving problems with singular equations and better 

than sinc methods. It is not appropriate for solving problems with 

singular solutions. The DE sinc-Galerkin method gives better 

results than SE sinc-Galerkin method. The problems are solved 

with Matlab on a personal computer. 

In these examples, the maximum absolute error at sinc points is 

taken as 
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In tables 1, 4 and 7 we give the absolute errors in some points 

using proposed methods. In tables 2, 5 and 8 we present 

maximum error in SE sinc-Galerkin method and DE sinc-

Galerkin method in all sinc points. In tables 3, 6 and 9 we give 

absolute errors in (a,b) with chebyshev cardinal functions. We 

use       in SE sinc-Galerkin method,      in DE sinc-

Galerkin method and      In Chebyshev cardinal functions. It 

is observed that although   in DE transformation is smaller but 

it’s better than SE transformation. In Chebyshev cardinal 

functions method our bases functions are interpolate functions of 

Chebyshev functions and by using low values of base functions, 

we have high accuracy of solutions of regular and singular 

equations, but the nonlinearity of these problems don’t let that we 

can choose a high value of base functions. Thus in our examples, 

we choose low values of     

Example 1. Consider the problem  

          
 (           )

     

 (  )   ( )     
 

with exact solution  

  
(    )

  
  

In this problem the singular point in equation is    . 

Table 1.The error of solving example 1 

Error in  

Chebyshev cardinal 

functions 

Error in SE 

sinc-Galerkin 
   

. 96 e-015 2.85 e-011 -0.999995130475963 

2.23 e-010 1.32 e-006 -0.687383065290916 

3.45 e-010 2.11 e-006 -0.273823495469893 

4.01 e-010 2.43 e-006 0 

4.48 e-010 2.71 e-006 0.273823495469893 

3.39 e-010 2.37 e-006 0.605940504455271 

4.49 e-011 3.48 e-007 0.961616491413769 

2.85 e-013 1.34 e-009 0.999858140267242 

 

Error in      sinc-Galerkin    in DE transformation 

8.94 E-016 -0.999994677382579 

1.40 e-011 -0.672078625326399 

2.03 e-011 -0.286634259852092 

2.32 e-011 0 

2.60 e-011 0.286634259852092 

2.34 e-011 0.608126245913561 

3.34 e-012 0.963240393303272 

1.70 e-014 0.999814417834297 

Table 2.Maximum error in SE sinc-Galerkin method and DE 

sine-Galerkin method 

‖   ‖ ‖   ‖ N 

1.41 e-006 0.4737 25 

2.72 e=011 1.88 e-002 50 

9.55 e-011 6.77 e-004 75 

2.46 e-010 4.23 e-005 100 

3.55 e-010 2.76 e-006 125 

 

Table 3. Max error in Chebyshev cardinal functions 

 

Example 2. Consider the problem  

(     )     (     )    (     )   

 (                             )  

 (  )   ( )    

with exact solution  

   (    ) (     ) 

In this problem the singular point in solution is      .  

 

 

 

 

 

 

 

 

 

 

 

 

error N 

1.4 e-005 10 

4.0e-010 15 

1.0e-019 20 



 

Table 1. The error of solving example 

   

Error in SE 

sinc-Galerkin 

       

Error in 

Chebyshev 

cardinal functions 

-0.999938937287810 7.83 e-11 2.75 E-4 

-0.886419699493427 1.65 e-7 1.21 E-1 

-0.605940504455271 7.95 e-7 7.13 E-1 

-0.398183994844089 1.60 e-6 1.15 E-0 

0 4.80 e-5 1.92 E-0 

0.273823495469893 9.62 e-6 2.21 E-0 

0.605940504455271 2.18 e-5 6.64 E-0 

0.913033166231486 4.28 e-5 4.49 E+1 

0.999995130475963 3.33 e-9 2.08 E-3 

 

   in DE trasformation 
Error in      sinc-Galerkin 

method 

-0.999949158093507 1.31 e-16 

-0.888259468294954 6.28 e-14 

-0.608126245913561 3.05 e-13 

-0.375635017328184 6.57 -13 

0 1.91 e-12 

0.286634259852092 3.76 e-12 

0.608126245913561 8.61 e-12 

0.913440889188212 1.76 e-11 

0.999994677382579 3.32 e-15 

 

Table 5. Maximum error in SE sinc-Galerkin method and DE 

sinc-Galerkin method 

‖   ‖ ‖   ‖ N 

2.27 e-006 5.2519 25 

1.88 e-011 0.65403 50 

6.08 e-011 7.02 e-003 75 

4.08 e-010 7.28 e-004 100 

4.39 e-010 4.29 e-005 125 

 

Table 2. Max error in Chebyshev cardinal functions 

error N 

300 e001 10 

400 e001 20 

 

Example 3. Consider the nonlinear problem  

(    )    (    )    (    )    (          

                   )  

 (  )   ( )    

with exact solution  

  (    ) (    ) 

In this problem the singular point in solution is      .  

 

Table 3. The error of solving example 3 

   

Error in SE 

sinc-Galerkin 

       

Chebyshev cardinal 

functions 

-0.999999982347064 1.05  e -14 2.97 E-7 

-0.398183994844089 7.96  e -08 2.11 E-0 

-0.139579107197183 1.22 e -08 9.86 E-1 

0.273823495469893 2.36 e -07 4.40 E-0 

0.509448868030365 4.45 e -07 4.96 E-0 

0.886419699493427 2.41 e -07 4.39 E-0 

0.999858140267242 3.75 e -10 5.39 E-2 

 

   in DE trasformation 
Error in      sinc-Galerkin 

method 

-0.999999986180038 6.27 e-17 

-0.375635017328184 8.71 e-14 

-0.193494262754776 2.13 e-13 

0.286634259852092 2.52 e-13 

0.537116659907527 5.29 e-13 

0.888259468294954 1.50 e-13 

0.999814417834297 2.73 e-16 

 

Table 8. Maximum error in SE sinc-Galerkin method and DE 

sinc-Galerkin method 

 

Table 9. Max error in Chebyshev cardinal functions 

5. Conclusion 

In this paper we compared the DE sinc-Galerkin and SE sinc-

Galerkin and Chebyshev cardinal functions for solving boundary 

value problems with singular point in equation or solutions. 

Chebyshev cardinal functions is a good method for solving 

problems with singular equations and better than sinc methods. 

The DE sinc-Galerkin and SE sinc-Galerkin are appropriate and 

the Chebyshev cardinal functions is not suitable for problems 

with singular solutions. It was observed that DE sinc-Galerkin 

with small   gives better results than SE sinc-Galerkin with 

bigger  . These results highlight the accuracy and potency of DE 

transformation. 
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