
 
International Journal of Applied Mathematics, Electronics and Computers 10(2): 049-056, 2022 

 
e-ISSN: 2147-8228 

 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS  

ELECTRONICS AND COMPUTERS 
 

 
www.dergipark.org.tr/ijamec  

 

 

International 

Open Access 
 
 

 

 

Volume 10 

Issue 02 
 

 

June, 2022 

 

 

* Corresponding author. E-mail address: mahmut.yasak@alpplas.com 

DOI: 10.18100/ijamec.1080843 
 

 

     Research Article 

A Line Fitting Algorithm: Linear Fitting on Locally Deflection (LFLD) 

Mahmut Sami Yasak a,* , Muhammed Said Bilgehan b  

aDeep Learning and Computer Vision Engineer, Alpplas, Istanbul 34500, Turkey 
bDeep Learning and Computer Vision Engineer, Alpplas, Istanbul 34500, Turkey 
 

  ARTICLE INFO  ABSTRACT 

Article history: 

Received 1 March 2022 

Accepted 1 June 2022 

 The main motivation of the study is to prevent and optimize the deviations in linear connections 

with complex calculations related to the previous and next steps. This purpose is used for more 

stable detection and therefore segmentation of object edge/corner regions in Quality Control 

Systems with Image Processing and Artificial Intelligence algorithms produced by authors within 

Alpplas Industrial Investments Inc. The dataset used in this area was originally obtained as a result 

of the edge approaches of the plastic panels manufactured by Alpplas Inc., extracted from the 

images taken from the AlpVision Quality Control Machine patented with this research. The data 

consists entirely of the pixel values of the edge points. Dispersed numeric data sets have quite 

changeable values, create high complexity and require the computation of formidable correlation. 

In this study, dispersed numeric data optimized by fitting to linearity. The LFLD (Linear Fitting 

on Locally Deflection) algorithm developed to solve the problem of linear fitting. Dispersed 

numeric data can be regulated and could be rendered linearly which is curved line smoothing, or 

line fitting by desired tolerance values. The LFLD algorithm organizes the data by creating a 

regular linear line (fitting) from the complex data according to the desired tolerance values. 
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1. Introduction 

The LFLD algorithm is briefly used for the optimization 

of one-dimensional numerical data by making local 

controls within the tolerance information. In the first stage 

of LFLD, out-of-tolerance values are detected by checking 

locally depending on previous and next values. Values 

detected step-by-step are labeled as extreme values, and 

sub-arrays (AKA out-of-tolerance or extreme arrays) are 

created. All values between the start and end points of 

these sub-arrays are re-calculated in the optimization 

function and replaced in the main array. 

The data that LFLD aims to optimize are noisy or 

scattered numerical data, and signals can be described as 

planar or 2D data. The noisy data might be available in 

sensor measurements, communication, transferring, 

compression, etc. data. To optimize the data, parts of noisy 

data need to be separated. 

Some of the solutions applied to optimize the noisy parts 

of the data are line smoothing or linear fitting. Also, locally 

weighted regression [4] method is used to smooth  

 

Figure 1. Comparison of Polynomial, Loess, Linear Regression, 
and LFLD Algorithm with 10 Tolerances on the Sample Dataset 

variables are among the methods used to solve the fitting 

problems. That study is also categorized as an approach to 

regression analysis by local fitting with nonparametric 

regression [1]. Locally independent variables [7] [8] are 
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computations of dynamic analogy types such as time 

series. This method is commonly used as Locally 

Estimated Scatterplot Smoothing (LOESS) [3] in a distinct 

name. Furthermore, this method was developed and also 

known as locally weighted [16] polynomial regression and 

abbreviated as LOWESS [4]. Another study in this field is 

the extraction of linear modeling [9] for a scalar response 

with dependent and independent variables [5], called linear 

regression [10] [11] [12] [13] [14] which is widely used 

for regression analysis. The linear model has estimated the 

parameters from data in linear regression [6]. There is 

another method that provides the smoothing of the data by 

using polynomial regression [2]. Polynomial regression is 

a class of regression analysis by extracting the relation 

between dependent and independent variables. 

     There is an approach study that developed to solve the 

linear fitting problem by Parasad [17]. That study using the 

extracted image pixel values such as our proposed 

solution. These pixels have dispersed conditions and they 

are trying to solve the fitting in order to linearize these 

pixel datas. This fitting occurs when an analytical 

expression of the maximum deviation  of  the  pixels  from 

the digital line can be derived. They are using a control 

parameter in the first line of the independent data. 

     In this study, the primary motivation is to apply local 

optimization and smoothen the parts of the scattered line 

data that are not within the desired tolerance values. The 

data extracted from the edge approaches of the plastic 

panels manufactured by Alpplas Inc., extracted from the 

images taken from the AlpVision Quality Control Machine 

patented with this research. LFLD is tested on one-

dimensional object edge points extracted with a Canny 

Edge [17] Detector of plastic panels. Canny Edge Detector 

output can contain incorrect edges because of 

environmental parameters such as lighting system, specks 

of dust, or scratches. Blurring algorithms may fail to clear 

the image from scratches, or it may fail because of the 

lighting system. The LFLD is produced to solve these 

kinds of situations. The stated line output of LFLD is the 

optimum line to correlate the dependent variables and 

eliminate the independent variables throughout the way-

line. The tolerance parameter is changeable with desired 

values (with the condition of staying in the data range) that 

provide the calibrated direction of the line. With the given 

optimum tolerance for any specified solution, the LFLD 

can re-produce given scattered line data as more linear 

(out-of-tolerance values are re-calculated as within 

tolerance) line data. 

These signified related works such as linear regression, 

polynomial regression, locally weighted polynomial 

regression, and LFLD algorithms compared with line-

fitting performance in Figure 1 and Figure 5. Here, the 

used dataset is (explained in the proposed methods section) 

shown as dispersed and noisy and having more dependent 

variables. 

2. Proposed Method 

2.1. Line Fitting on Locally Deflection Algorithm 

LFLD is an algorithm that takes one-dimensional 

numeric data as input and applies optimization to data. 

LFLD mainly focuses on line fitting to dispersed data with 

noisy as desired tolerance values which are used to 

determine the direction of the line. In this meaning, the 

data may be an edge of an object in images, a history of 

route data with missing locations of a vehicle, or noisy 

voice data. In the aim of focus, the study tested on one-

dimensional object edge points extracted with a Canny 

Edge Detector shown in Figure 2. 

 

Figure 2. Object Edge Points Extracted with Canny Edge 
Detector One-Dimensional Data for Testing Purpose 

On test data, LFLD starts with the detection of out-of-

tolerance values by checking locally. In the step meant as 

"Checking Locally" is LFLD walks on one-dimensional 

data and saves the value index before the first out-of-

tolerance value (the value within the last tolerance - alpha) 

in the memory, and after this event, it continues to walk 

with knowing it is at the out-of-tolerance area (blind area) 

until it encounters the value within the last tolerance value 

index (beta) and applies optimizing process between the 

range of alpha (last out-of-tolerance value index before 

blind area) and beta (first tolerance value index after blind 

area). The optimization process is calculated with the 

formula given in the following equations. 

𝜇 =  
𝛽 −  𝛼

𝜀 + 1
 (1) 

∆𝑖  =  ∑

𝜀

𝑖=1

(𝛽 +  𝑖 ∗ 𝜇) (2) 

 

∆ =  [ ∆1,  ∆2,  ∆3, … ,  ∆𝑖 , … ,  ∆𝜀] 
(3) 

In equation 1, where µ is a new value that is the result 

of the Linear Fitting Process which calculation shown in 

equation 1 and algorithm, β is Average Difference at 

subsequence of the one-dimension array that is 

encountered out-of-tolerance. In equation 1 where α is the 

start value at the out-of-tolerance sequence and ε is the 

number of samples in the out-of-tolerance sequence shown 

in algorithm 1 of Figure 9. On the other hand, equation 3 

is to show the array of all re-calculated subsequences of 

the one-dimension array that is encountered out-of-
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tolerance where it starts from one to ε. After the calculation 

of µ, with algorithm 3 in Figure 9, the result will be used 

in ∆𝑖  the calculation which shows in algorithm 2 of Figure 

9. After calculation of all ∆𝑖 's are where 𝑖 is from first 

element index of out-of-tolerance by sequence to last 

element index of out-of-tolerance sequence, result array 

will be syncs to the main array with between specified 

array index ranges. 

Table 1. Error metrics of the line fitting algorithms 

Methods Name Data MSE 

LOESS Numeric Data 13879.695 

Linear Regression Numeric Data 14698.214 

Polynomial Regression Numeric Data 15168.114 

LFLD Numeric Data 14111.067 

 

In Table 1, As a result of the application of the related 

works and the LFLD algorithm are shown a performance 

metric as Mean Squared Error (MSE). The MSE error 

metric is calculated by the following equation. 

𝑀𝑆𝐸 =  
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖
′)2

𝑛
 (4) 

In equation 4, where 𝑦𝑖is actual values, 𝑦𝑖
′  is the 

predicted or calculated values, 𝑖 is data to forecasting or 

calculation, 𝑛 refers to the size of data. The calculated and 

error metrics were determined above equation as 

MSE=14111.067 for LFLD. The reason that the MSE 

scores of all related works are too high is that the used 

sample data regression values range is too high. Also, the 

data regression range is shown in Figure 2 and Figure 4. 

Thus, all MSE results of related works and LFLD are too 

high by virtue of the high distance between all regression 

points in the sample data. 

 

 

Figure 3. The Line Fitting Performance by Different Tolerances 

of the LFLD Algorithm 

 

In Figure 3 and Figure 6, there are four desired tolerance 

values such as 5, 12, 19, and 26 to perform to determine 

the direction of the line. The direction is collapsed by the 

tolerable noise value or independent value as a specified 

parameter. The used sample tolerance parameters show 

how the degree of contained view and how it occurs. 

Also, our proposed method applied another dataset [18] 

shown in Figure 4 that has signal and noise variables as 

dispersed conditions and linear relationship between 

independent variables and dependent variables. 

 

Figure 4. Second Sample Dataset 

 

 

Figure 5. Comparison of Polynomial, Loess, Linear Regression, 

and LFLD Algorithm with 31 Tolerances on the Second Sample 

Dataset 

 

 

Figure 6. The Line Fitting Performance by Different Tolerances 

of the LFLD Algorithm 

 

2.2. Algorithm Schematic 

In Equations 1, 2, and 3 are completed explanations in 

Figures 4 and 5. Also, algorithm schematics are detailed 

and represented pseudocode in Figure 7. 
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Figure 7. Extraction of coefficient with repetitive values at algorithm-1D sequence changes detection 
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Figure 8. Extraction of coefficient with repetitive values at sequence on algorithm-optimized sampling in range 
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Figure 9. The main LFLD algorithm is explained in Algorithm 1, Also sub-algorithms in Algorithm 2 and Algorithm 3 call the main 
algorithm to optimize and solve the locally deflection    
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3. Performance Hardware 

Intel i7-10750H 2.60GHz CPU, 16GB 2133MHz RAM, 

and NVidia GTX 1650Ti with Max-Q Design 4GB GPU 

RAM hardware was used to test the algorithm. The 

processing times of the whole applied algorithms, which 

are mentioned in the tables, were obtained with the 

specified hardware and the programming phase of the 

study was developed in Python 3.7 Programming 

Language. 

Table 2. Hardware information 

Hardware Process Time (ms) 

CPU Intel i7-10750H CPU @ 2.60GHz 

RAM 16 GB 2667 MHz 

Memory  SSD 512 GB 

GPU  NVIDIA GeForce GTX 1650Ti 4GB 

4. Conclusions 

The Line Fitting Locally Deflection algorithm has been 

applied as a solution for the dispersed noisy data to solve 

the linear smoothing problem. Also, the proposed 

tolerance feature can be able to determine the direction of 

the line in every step into the dataset. 

 

 

Figure 10. LFLD Compare Alternatives Scipy Library 
Algorithms 

In this meaning, the dataset can be an edge of an object 

in images, a history of route data with missing locations of 

a vehicle, or noisy voice data. In the aim of focus, the study 

tested on one-dimensional object edge points extracted 

with a Canny Edge Detector shown in Figure 2. Also, both 

LFLD and scipy library algorithms calculations are shown 

in Figure 10. As shown in the figure, LFLD Algorithm 

with tolerance 10 has the minimum slip that fits to the 

purpose, which is to get the optimum edge points of an 

object. For future works, LFLD may contain machine 

learning algorithms to detect optimum tolerance for well-

known purposes such as edge detection, segmentation 

errors correction [15], etc. Also, LFLD has the problem 

that if the starting point value of the master data is 

incorrect, the whole process will be calculated based on 

the improper starting value. Thus the algorithm should 

trust the start value of the dataset. 

 

In Table 3, the LFLD algorithm is compared with 

process time performance with related loess, linear, and 

polynomial algorithms and it has also been added to the 

comparison by using some interpolation algorithms such 

as Not-a-Knot, Clamped, and 2nd Derivative in the scipy 

library, which is an open library publication. 

Table 3. The process time metric of applied algorithms 

Algorithm Process Time (ms) 

Not-a-Knot 0.00100 

Clamped at 0 0.00100 

Clamped at 5 0.00100 

Natural at 0 0.00100 

2nd Derivatives at 5 0.00100 

Polynomial Regression 0.00798 

Loess Regression 0.04288 

Linear Regression 0.00199 

LFLD – Tolerance: 26 0.00200 

LFLD – Tolerance: 19 0.00200 

LFLD – Tolerance: 12 0.00200 

LFLD – Tolerance: 5 0.00100 

LFLD – Tolerance: 10 0.00200 
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