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 Detection of smoke from videos captured by surveillance cameras in outdoor environments is one 

of the useful outcome of Internet of Things (IoT) applications. The potential benefit increases 

when deep learning (DL) architectures are involved. However, an inherent difficulty is to detect 

smoke while natural events like fog exists. The effectiveness of color spaces in detection 

performance has not yet fully evaluated in those architectures. Moreover, the energy and memory 

requirements of DL architectures may not be applicable for handling IoT implementation 

demands. Therefore, in this work, a DL architecture with a suitable color space model, applicable 

for IoT implementations is proposed to detect smoke from videos in foggy environment. By 

collecting several videos including smoke samples, the performance comparison of popular and 

the state-of-the-art DL architectures denoted the outperforming result according to both accuracy 

and memory usage. 
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1. Introduction 

Detection of fire is one of the major part of early warning 

systems for the safety of environment and people. At the 

initial instant, fire emits a visible smoke which may come 

with or without a flame. Today, electronic smoke detector 

equipment is already in common use for indoor 

environments while cameras are becoming a major part of 

the detection systems. In the case of outdoor or wildlife, early 

detection systems make use of surveillance systems with 

cameras including automated and intelligent capabilities. 

Those systems are now being considered in Internet of 

Things (IoT) framework which requires energy-efficient 

approaches when interconnected with other larger systems, 

for example in a smart city concept [1]. 

 During the last two decades, studies on computer vision 

for fire detection systems have been increased [2, 3]. Since 

the smoke is visible before the flame, a majority of the works 

have also included smoke detection approaches especially 

for the detection of wildfire [4-7]. Those detection systems 

depend on extracting reliable and effective features 

reflecting texture, shape, color, movement, energy, and 

frequency [8] that will help to deal with the real-world 

conditions such as fog, rain, or snow. Particularly, color 

information has shown to be useful and easily applicable [9-

15]. 

Recent studies have focused on the use of the deep 

learning (DL) techniques that does not necessarily require a 

handcrafted feature extraction step. Therefore, it is more 

convenient to build end-to-end systems directly using the 

image or video data without the need of extracting features 

from them. In this manner, models based on convolutional 

neural networks (CNNs) have been considered [16-18]. The 

well-known baseline models like VGG-16 [19], AlexNet 

[20], GoogLeNet [21], ResNet [22], DenseNet [23], and 

MobileNet [24] have been applied. The DL methods for 

object recognition such as YOu LOok only once (YOLO) 

based on detecting the interested regions on the images have 

been used in an embedded system [25]. Apart from those 

general models, several smoke detection studies made use of 

other specific CNN architectures. Among them, a Deep 

Normalization and Convolutional Neural Network 

(DNCNN) has been proposed for smoke detection which 

handles both feature extraction and smoke recognition at the 

http://www.dergipark.org.tr/ijamec
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same time [26]. The Faster R-CNN [27] model has been used 

to detect smoke in forest fire with augmented data of 

synthetic images [28]. Stacking basic blocks as a deep multi-

scale CNN (DMCNN) for smoke recognition has been 

proposed [29] as a lightweight model. Likewise, a 

combination of VGG-16 and Resnet50 network architectures 

has been fused as a deep network to improve feature 

expression ability while increasing the depth of the whole 

network [30]. Specialized network models like FireNet [31] 

is another example of a lightweight model suitable for 

mobile and embedded applications. Energy efficient network 

models for similar intentions have been also given [32-36]. 

Other recent examples of CNN models for smoke detection 

include temporal evolution or combinations of networks 

such as the two-stage training of a Deep Convolutional 

Generative Adversarial Neural Network (DCGAN) [37], 

dilated CNN [38], deep saliency network [39], and deep 

dual-channel CNN based solutions [40, 41]. 

On the other hand, IoT is becoming more and more 

associated with the digitalization of environments for ease of 

control and respond to events. The IoT technology helps to 

detect fire incidents in forests, or in other areas by measuring 

real-world information such as temperature, gas levels, 

humidity, wind direction and speed. Today, computer vision-

based techniques replace the conventional fire detection by 

overcoming the shortcomings of sensor-based methods [14]. 

Therefore, for the case of image/video, some of the 

aforementioned studies have presented their work [25, 31-

34] considering the minimization of resources to be 

applicable for IoT implementations. 

However, most of those works do not consider the effect 

of color spaces in camera recordings. Based on this 

motivation, we propose an energy-efficient smoke detection 

architecture of a color space based on CNNs. The novelty 

and the difference of this work lies in incorporating the color 

space models with the DL architectures in order to determine 

the best performance in detection of smoke. This is achieved 

by modifying the DL architectures and using the artificially 

generated foggy images to determine smoke from a foggy 

environment. Another aim is to determine the best structure 

requiring lower resources for IoT applications. A large set of 

videos is collected for this purpose and evaluations are 

performed for validation. 

In the next section, the color space models are reviewed 

and the video collections gathered to be used with the DL 

architectures are summarized. Section 3 presents the 

proposed structure including the data preparation and 

modification of the DL architectures. Section 4 displays the 

evaluations and performance comparison with the state-of-

the-art results. Final section summarizes the results and 

concludes the paper.    

2. Smoke Detection 

Smoke detection from image or video features vary based 

on the properties of the image texture, the segmentation 

applied for certain shape information, the representation 

captured as color spaces, the consecutive changes because of 

the movement, and other fundamental signal level features 

based on energy or frequency [8]. A brief information of the 

color spaces used in this work will be given in the sequel. 

Then the deep learning architectures and the sources of 

videos used in this work will be listed.  

2.1. Color spaces 

In computer graphics, based on tristimulus representation 

theory, color spaces are simply representations of color in 

three dimensional linear spaces or intensity channels of the 

red, green, and blue colors known as RGB. However, there 

are different interpretations which the selected components 

might be transformed into different color models. Perceptual 

color models use hue and saturation referring to chromaticity 

and additionally brightness information. The most common 

is the HSV (hue, saturation, value) which is also referred to 

as HSI (hue, saturation, intensity) or as the HSB (hue, 

saturation, brightness). A convenient model to represent the 

brightness in videos is the YUV that uses luminance and 

chrominance components. The Y component is called as the 

luma and the remaining components are referred to as the 

chrominance and specifically blue-based chrominance and 

red-based chrominance as in the YCbCr color space. A 

uniform color space is obtained by transformation of the 

reference points and the lightness value in L*a*b* defined 

by the International Commission on Illumination (CIE), 

describing a color on the red-green chrominances (a*), and 

on the yellow-blue chrominances (b*) [42, 43]. 

A color in a color model is described by numbers 

indicating how much of color, brightness, or other 

components is included. In digital imaging done by 

computers, these component values are often in the range 0 

to 255, for an 8-bit resolution. For each of the images taken 

from the sequence of the videos, the component values of 

each pixel in the image, represented by the values of RGB, 

can be expressed with other color spaces by suitable 

transformations. In the following, the transformation 

formulas converting from RGB to YUV, HSV, and L*a*b* 

are presented, respectively. 

From RGB to YUV: 

𝑌 = 0.229R + 0.587G + 0.114B 

𝑈 = 0.1687R + 0.3313G + 0.5B + 128 

𝑉 = 0.5R + 0.4187G + 0.813B + 128 

(1) 

From RGB to HSV: 

𝑉 = max(𝑅, 𝐺, 𝐵) 

𝐻 =

{
  
 

  
 

60(𝐺 − 𝐵)

𝑉 − min(𝑅, 𝐺, 𝐵)
𝑖𝑓 𝑉 = 𝑅

120 + (𝐵 − 𝑅)

𝑉 − min(𝑅, 𝐺, 𝐵)
𝑖𝑓 𝑉 = 𝐺

240 + (𝑅 − 𝐺)

𝑉 − min(𝑅, 𝐺, 𝐵)
𝑖𝑓 𝑉 = 𝐵

 
(2) 
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 𝑆 = {
𝑉−min(𝑅,𝐺,𝐵)

𝑉
𝑖𝑓 𝑉 ≠ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

From RGB to L*a*b*: 

[
𝑋
𝑌
𝑍
] = [

0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

] [
𝑅
𝐺
𝐵
] 

𝐿∗ = 116𝑓 (
𝑌

𝑌𝑛
) − 16 

𝑎∗ = 500 [𝑓 (
𝑋

𝑋𝑛
) − 𝑓 (

𝑌

𝑌𝑛
)] 

𝑏∗ = 200 [𝑓 (
𝑌

𝑌𝑛
) − 𝑓 (

𝑍

𝑍𝑛
)] 

(3) 

where 𝑋𝑛=0.0950456, 𝑌𝑛 = 1, 𝑍𝑛 = 1.088754 and 

𝑓(𝑠) = {
1

3
(
29

6
)
2
𝑠 +

16

116
𝑖𝑓 𝑠 ≤ (

6

29
)
3

𝑠
1
3 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (4) 

While most of the cameras work based on the RGB 

intensity values, by using these transformations it is 

straightforward to convert the image pixel information 

irrespective of the cameras. 

2.2. Deep learning architectures 

Recent studies in both machine learning and computer 

hardware have contributed to propose efficient methods for 

training deep neural networks. Instead of fully connected 

hidden layers, the CNN typically has alternating convolution 

and pooling layers. Following the record-breaking success of 

AlexNet at 2010 ImageNet Large-Scale Visual Recognition 

Challenge several research groups have achieved lower error 

rates with higher number of layers as in GoogLeNet, ResNet 

and DenseNet. 

Furthermore, advanced modules combine different deep 

learning architectures aiming to increase the performances. 

In Inception, many mini-network modules are built, multiple 

convolution filters of different sizes are then concatenated. 

On the other hand, it is known that increasing the number of 

layers are prone to the problem of vanishing gradients. The 

ResNet structure offers a solution for this problem. By 

combining the Inception with the ResNet lower error rates 

have been obtained. Another solution came up by making 

short-cuts between the input and output layers through the 

transition layers as in the DenseNet architecture. Further 

achievements have been proposed in Xception when depth-

wise and point-wise convolutions are involved instead of 

conventional convolutional layers. An important 

achievement is obtained by using the MobileNet architecture, 

where mobile models of inverted residual structure is built 

with shortcut connections between the thin bottleneck layers. 

This is resulted with the minimization of requirements while 

improving the performance. 

 

 

2.3. Video sources 

The increasing use of cameras for wildfire detection led to 

many video sources available to be used for forest fire/smoke 

detection. However, most of the studies presented their 

results with a limited number of available videos. Today, 

with the increasing number of available videos and DL 

architectures, the problem can be investigated with more 

number of image data and with recent modules. As deeper 

learning structures may obtain better accuracy performances 

while handling more data, in this work an important number 

of videos is collected. The list of the video sources used in 

this study is presented in Table 1. 

Table 1. List of the collected video sources 

Source Address 

Wildfire 

smoke 

detection [5, 6] 

https://homes.di.unimi.it/genovese/wild/wildre.htm 

Center for 

Wildfire 

Research [44] 

http://wildre.fesb.hr 

VisiFire [4] http://signal.ee.bilkent.edu.tr/VisiFire 

MIVIA Smoke 

Dataset [12] 

https://mivia.unisa.it/datasets/video-

analysisdatasets/smoke-detection-dataset 

Firesense [45] https://zenodo.org/record/836749#.XrFiavkzZEY 

Pond5 https://www.pond5.com 

Pronghorn 
Productions 

http://www.hdnaturefootage.net 
 

3. Proposed Structure for Smoke Detection 

There are many DL architectures used for fire/smoke 

detection from videos as mentioned in the previous sections. 

However, the real world weather conditions may degrade the 

performance. In the case of fog, our proposal depends on the 

effectiveness of the color spaces that has not yet presented 

for some of the DL architectures. On the other hand, the 

performance of DL structures highly depends on the massive 

amount of data. As there is a lack of smoke images in a foggy 

environment, our proposal includes augmenting artificial 

smoke to the images. Therefore, the structure is defined not 

only to decide whether the image contains smoke or not, but 

extended to determine the four possible outputs as smoky, 

foggy smoky, normal, and foggy. 

The artificially generated foggy images use the 8-bit RGB 

image (𝐼𝑅,𝐺,𝐵)  for every channel. The image is first 

brightened by adding the 100 brightness value to the pixel 

values of the image. The highest brightness value of each 

color channel of RGB is then scaled with the highest 

brightness value of brightened image. 

𝐼𝑓𝑜𝑔𝑔𝑦(𝑅,𝐺,𝐵) = (𝐼𝑅,𝐺,𝐵 + 100) ×
𝑎𝑟𝑔𝑚𝑎𝑥{𝐼𝑅,𝐺,𝐵}

𝑎𝑟𝑔𝑚𝑎𝑥{𝐼𝑅,𝐺,𝐵+100}
  (5) 

An example of a real and its modified version with the 

addition of synthetically generated fog are presented in 

Figure 1. Note that the increase in brightness may add further 

difficulty in detection of smoke. 

 

https://homes.di.unimi.it/genovese/wild/wildre.htm
http://wildre.fesb.hr/
http://signal.ee.bilkent.edu.tr/VisiFire
https://mivia.unisa.it/datasets/video-analysisdatasets/smoke-detection-dataset
https://mivia.unisa.it/datasets/video-analysisdatasets/smoke-detection-dataset
https://zenodo.org/record/836749#.XrFiavkzZEY
https://www.pond5.com/
http://www.hdnaturefootage.net/
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Figure 1. An example of a real [46] (left) and its synthetically generated foggy image (right) 

Irrespective of the images being real or includes artificial 

fog, the RGB images are converted to other color spaces 

using the equations (1) to (4). Our experiments denoted that 

the HSV color space is effective in detection of smoke 

regions in the image. In order to reveal this effectiveness a 

comparison is given with an example image of RGB, YUV, 

L*a*b*, and HSV, as presented in Figure 2. Note that the 

images presented for the other color spaces are the 

corresponding representations in RGB color space. In brief, 

the proposed structure depends on the use of HSV color 

space. 

 

 

 

Figure 2. The comparison of color spaces for an example image [14]. RGB (top left), YUV (top right), 

L*a*b* (bottom left), and HSV (bottom right) 

4. Experimental Results 

We performed experiments using the images collected 

from the video sources given in Table 1. A total of 188 video 

files have been converted into the image sequences of a total 

of 72220 images. As those videos have varying duration and 

frame per second rates, a selection is performed based on a 

similar work [32]. The whole data is separated into three 

groups with 20% for training, 30% for validation, and the 

rest 50% for testing in order to compare with the existing 

studies [32, 33]. The number of images for each group is 

displayed in Figure 3. 

 

Figure 3. The number of images used for training, validation and testing 
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To maintain the structure of four outputs, the output 

softmax layer of the DL architectures is replaced with the 

proposed scheme accordingly as graphed in Figure 4. Then 

the performance of the proposed structure is compared 

with the selected and correspondingly modified 

architectures of VGG-16, VGG-19, InceptionV3, 

InceptionResNetV2, Xception, DenseNet169, 

DenseNet201, and MobileNetV2. In all of the 

architectures, the stochastic gradient descent (SGD) 

optimizer was used with a learning rate of 0.001. The batch 

size was selected as 16 with a number of epoch as 30. 

 

Figure 4. The general modified scheme of architectures 

 

The performance of the systems is evaluated based on 

the accuracy of the test set in percentages and the memory 

space in megabytes (MB) required for storing the weight 

coefficients of the DL architectures. The average accuracy 

values for the corresponding architectures and color spaces 

is presented in Table 2. Notice that the RGB has the 

poorest performance with no highest score in any of the 

architectures, while HSV has the highest score in most of 

the DL architectures. 

Table 2. Average accuracy values (%) 

Architecture Color spaces 

RGB YUV L*a*b* HSV 

VGG-16 94.99  94.47 96.45 97.50 

VGG-19 93.83 96.36 94.43 96.08 

InceptionV3 95.46 97.50 95.20 97.73 

InceptionResNetV2 95.15 95.79 94.99 97.62 

Xception 96.44 96.72 97.24 97.19 

DenseNet169 95.23 96.97 97.56 98.14 

DenseNet201 95.27 94.18 97.13 95.21 

MobileNetV2 96.72 98.19 97.45 98.95 

 

The confusion matrix corresponding to the best 

performance of HSV with MobileNetV2 is shown in Table 

3. The misclassifications of foggy and smoky is similar to 

the one of misclassifying a normal image with a smoky 

image. 

Table 3. Confusion matrix of MobileNetV2 with HSV color 
space 

 True  

Predicted Smoky Foggy 

smoky 

Normal Foggy 

Smoky 9234  15 50 0 

Foggy smoky 48 9236 0 22 

Normal 9 0 8704 0 

Foggy 6 46 4 8758 

 

A comparison of memory usage for the DL architectures 

used in this study is given in Table 4. It is seen that the 

MobileNetV2 has considerably much lower memory space 

requirement. 

Table 4. Memory usage 

Architecture Size (MB) 

VGG-19 545.35 

VGG-16 524.60 

InceptionResNetV2 214.27 

InceptionV3 86.03 

Xception 81.90 

DenseNet201 73.44 

DenseNet169 50.96 

MobileNetV2 9.29 

 

The performance of the proposed method is compared 

with the state-of-the-art architectures using similar 

parameters, where a summary is presented in Table 5. 

Remark that the other studies not listed here utilizing any 

one of the color spaces make a classification between 

smoke and non-smoke. 

Table 5. A comparison of studies based on color space, 
accuracy and memory size 

Reference Architecture Color 

space 

Accuracy 

(%) 

Size 

(MB) 
[32] VGG-16 RGB 97.72 930 

[33] MobileNetV2 RGB 98.17 13.23 

[46] DenseNet169 YUV 97.80 50.9 

Proposed MobileNetV2 HSV 98.95 9.29 

5. Conclusions 

The detection of smoke from captured video images is 

an important step to prevent fire and its outcomes. While a 

binary detection scheme gives satisfactory results, real 

world situations necessitate detection systems to work in 

harsh conditions. One of the major condition in detection 

of smoke is the fog which share almost the same visible 

color information. Thus, our proposal is to benefit from 

color spaces in detection of smoke in foggy environments. 

This is accomplished with the DL architectures using a big 

number of image data collected and combined for this 

purpose. As the data is sparse for a fair comparison of 

smoke images in a foggy environment, artificially 

generated images are used. 

Results demonstrated the efficiency of the proposed 

structure of the modified MobileNetV2 architecture with 

HSV color space. When compared with the well-known 
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DL architectures and similar works, it performed with a 

best accuracy score, while requiring lower memory space. 

This is foreseen to be an important issue especially in the 

IoT applications, as the DL architectures are becoming 

saturated in performance accuracy but they might still be 

compacted for further incoming lightweight 

implementations. 
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