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 This paper presents a multi-criteria evaluation model applied to the parameterization of the MRP 

method. Existing optimization approaches that address this problem tend to adopt a means of 

simulation. A simulated solution is characterized by a pair (parameters, performance indicators). 

In the context of the evaluation of solutions, the work of Barth, Damand et al. (2003) propose a 

heuristic approach to extracting knowledge from a solution set. The approach is based on the 
definition of a multi-criteria solution comparison function. The objective of this paper is to present 

the detailed modeling of this comparison function. Ultimately, this result contributes to the 

formalization of a multicriteria optimization problem. A problem solving strategy is proposed. 
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1. Introduction 

Parameterization of the MRP method consists of 

dynamically specifying all the values of the method’s input 

parameters (AP), taking into account the performance 

objectives, the parameter constraints and any new aspects 

of the situation under consideration. In some cases, it is 

possible to respond to the evolutions rapidly through 

programmed decisions. In the case of this paper, the 

decision-maker, hereinafter called "the planner ", does not 

have the prerequisites for the action, but is in a problem-

solving situation. Conducting research implies having a 

means of simulation that can answer ‘what if’ type 

scenarios. The output values of the method enable the 

system’s performance to be measured, generally expressed 

in performance indicators (PI). A solution is thus 

described as a relationship between an AP configuration 

and a PI configuration (hereinafter called an AP-PI 

relation). The evaluation of the set of solutions allows the 

properties characterizing the APs, the PIs and the AP-PI 

relations in the situation under consideration to be 

identified. The properties are inferred from an interaction 

between the planner’s assessment questions and his 

representation of the overall structure of a set of solutions. 

In the performance space achieved, example generic 

evaluation questions include [2,6,8,15]: 

- What is the effect of APs on PIs?  

- Which performance areas are attainable? 

- Are there any equivalent solutions? 

- How does an AP-PI relationship stand with regard to 

other relations? 

- How does an AP-PI relationship stand in the absolute 

(rejection, waiting, acceptance)? 

 

The type of questions presented above deal with issues 

concerning the multi-criteria decision-making support 

(sorting (), ranking () describing () selecting ()) 

introduced by [18]. In this case, the methods must, first, 

include the decider’s preferences and second, propose an 

intelligible global representation depending on the issues 

under consideration. In the context of the parameterization 

of the MRP method, in [2], the authors put forward a model 

called the plan of preferences, which combines both the 

sorting and the ranking issues. As a research perspective, 

the authors motivate a performance exploration problem in 

the plan of preferences. The problem described is a 

combinatorial optimization problem. Two optimization 

problems are formulated as follows: (A) What are the best 

least good solutions with respect to the models of 

http://www.dergipark.org.tr/ijamec
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preference (ranking and sorting)? (B) Are there any 

solutions in this or that area of performance of the plan of 

preferences? The multi-criteria comparison function of the 

solutions is defined. However, the authors did not 

formalize the method required to construct the proposed 

model. The aim of this paper is therefore to formalize this 

method. 

 

The paper is divided into 5 sections. Section 2 describes 

the theoretical background. Section 3 presents the plan of 

preferences concept. Section 4 describes the formalization 

of the plan of preferences construction method. Finally, 

section 5 concludes with the research perspectives 

generated by this work. 

2. Theoretical background 

Relations between APs and PIs have been widely 

covered in the academic literature. In the last 30 years, 

there have been 10 states of the art: 

[7,9,10,11,12,13,14,17,19,22]. These papers address three 

classes of AP-PI relations, namely, relations linked to: 

stock |7,22,12], the planning method [17,19] and a 

simultaneous stock and planning method [13, 14, 11,9,10].  

One recent state of the art [10], based on an analysis of 

87 papers from 1976 to 2017, listed studies involving 31 

APs, 29 PIs and 247 AP-PI relations. Not all the relations 

have been studied, however. The most widely studied APs 

are: demand variations, lot-sizing rule, planned lead time, 

freezing proportion, planning horizon, product structure, 

schedule rule, and replanning periodicity. The most 

frequently studied PIs are: (setup + carrying + ordering) 

costs, schedule instability, service level, (carrying + setup) 

costs, stockout (number of units, etc.), and capacity 

utilization. For an AP-PI relation, the ‘what if’ question is 

addressed as follows: what is the sense of the PI variation 

if the value of the AP increases or decreases? To illustrate 

this, we can mention the AP-PI relations identified in the 

following 3 studies: 

1. Total increase in cost if the freezing proportion 

increases [20], 

2. Increase in schedule instability if the freezing 

proportion [21], 

3. Decrease in schedule instability if the freezing 

proportion increases [1].  

 

Studies are mainly distinguished by the operating 

conditions and the number of AP-PI relations studied. 

Operating conditions are characterized in four ways: 

number of manufacturing levels (single-level or multi-

level), type of demand (deterministic or stochastic), 

capacity (uncapacitated systems or capacitated systems), 

and item numbers (multiple or single). In [10], the authors 

highlight the contextual nature of the findings above. In 

effect, results may vary depending on changes to the 

operating conditions. For example, the relations 2 and 3 

above are contradictory. The experiments by [21] and [1] 

respectively differ according to the operating conditions 

linked to the 'capacity' modality.  

It is unlikely that the results of these studies could be 

used as a decision-making support for the parameterization 

of the MRP method in general cases. However, it would 

be feasible to use the 'simulation- experimental design' 

methodology linked to a set of AP-PI relations and 

interpreted by the planner of specific systems. 

In such a case, one difficulty would lie in the 

multicriteria evaluation of the AP-PI relations. A 

parameterization study may include several hundred 

multicriteria relations; the study by [16] for instance is 

described as follows: 6 PI, 4 AP, 448 simulated AP-PI 

relations. 

3. The plan of preferences concept 

To facilitate multicriteria evaluation and comparison of 

AP-PI relationships in a specific environment, the paper 

titled “How Can We Ascertain, Understand and Interpret 

the Performance Level of A Production System? A Visual 

Method: The Plan of Preferences” [2] propose a way of 

considering support for the evaluation from a set of AP-PI 

relations thanks to the description of the properties related 

to ranking (rank of a AP-PI relationship) and sorting (class 

of a AP-PI relationship). The issues pertaining to ranking 

and sorting are complementary. The drawback in the case 

of ranking is that the evaluation of the AP-PI relationship 

is made with respect to the other relations. Thus, a situation 

can very well emerge as the best of a set of relations, even 

though it is bad in the absolute. Sorting, on the other hand, 

involves steering the investigation towards highlighting an 

assignment of relationships to predefined classes. These 

predefined classes specify the absolute value of relations. 

"Relative and absolute" evaluations correspond to two 

value judgements identified in cognitive psychology [3].  

The AP-PI relations are represented on a plan (Figure 

1). The X and Y axes respectively support the two relations 

of preference (sorting and ranking). The coordinates of a 

solution s1 (a specific AP-PI relation) are: X assigned class 

C1, Y rank R1.  

 

Figure 1. Plan of preferences in the AP-PI relations evaluation 
process 

The purpose of the plan is to visualize an elaborate 

Properties
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representation of all the performance achieved enriched by 

the planner's preferences.  

This involves dialogue with the representation to extract 

properties. In [2], the authors suggest beginning the 

dialogue between the decision-planner and the plan of 

preferences with the following intuitive question: "How 

does the initial solution fit in with the new situation?" 

Subsequent questions are formed and linked together 

according to the interpretations of the properties extracted 

from the plan of preferences. This method draws on 

gradually acquired information. The decision planner 

intervenes throughout the multicriteria analysis to give 

information on his or her true preferences. Using the 

preference plan, the multicriteria method helps decision-

makers construct their overall preferences (called pre-

order of the decision-maker [18]). 

This outcome is not only based on the logic of the 

preference plan, but also on the logic of the decision 

planner as it is revealed from information obtained at 

different stages of the evaluation process. These 

revelations, however, remain within the logical framework 

set by the model. This takes us on to the following section. 

4. Formalisation of the plan of preferences 
construction method 

This section presents respectively the formalization of 

AP-PI relations, scales of preferences supported by the XY-

axes and the evaluation rules of the plan of preferences. 

4.1. AP-PI table  

Notation 

APj(si): level of APj ({APj | j = 1, …,t}) of the solution si 

({sj | i = 1, …,n});  

PIj(si): value of the PIj ({PIj | j = 1, …,m}) of the solution 

si. 

The set of AP-PI relations derived from simulation are 

summarized in a table called the AP-PI table (Table 1). 

 

Table 1. AP-PI table 

si 
APj PIj 

AP1 … APt PI1 … PIm 

s1 AP1(s1) … APt(s1) PI1(s1) … PIm(s1) 

… … … … … … … 

sn AP1(sn) … APt(sn) PI1(sn) … PIm(sn) 

 

One line of the table corresponds to an AP-PI relation. 

An AP-PI relation, also called solution si (Hata! Başvuru 

kaynağı bulunamadı.) in what follows, is represented by 

the values of AP (AP1(si), AP2(si), …, APj(si), …, APt(si)) 

and the values of PI (PI1(si), PI2(si), …, PIj(si), …, PIm(si)). 

The number of lines in the table depend on several factors. 

Let’s assume that the system is controlled by t APi 

parameters. Each parameter is associated with several 

levels. If the parameter is qualitative, the number of levels 

will correspond to the number of possible parameter 

conditions. If the parameter is represented by a 

quantitative variable, only a finite number of possible 

values for the parameter will be retained. If we note Ni as 

the number of levels respectively associated with the APi 

parameters, the potential number of lines on the table will 

be: ∏ 𝑁𝑖𝑖 . 

The analysis space is the space whose dimensions are 

represented by performance indicators. In a multicriteria 

approach, solutions are estimated by analyzing the values 

they take for each PIj. Moreover, the PIj are real variables. 

The PIj space is thus always mathematically represented. 

To analyze the structure of the performances achieved, we 

need to prepare the information contained in the AP-PI 

table for this purpose. 

 

4.2. Y-axis, solutions ranking scale  

4.2.1. Construction of the ranking relationship 

Ranking consists of differentiating the solutions 

according to their relative interest in a decreasing order of 

preference. In the study context, PIs are highly 

heterogeneous and difficult to compare. Thus, an 

outranking method has been adopted. This approach is 

based on an elementary mechanism, namely, the pairwise 

comparison of solutions, PI by PI. It involves a set of 

conditions leading to the acceptance or rejection of an 

outranking at global level.  

The family of outranking methods is dominated by the 

ELECTRE method [18] and the PROMETHEE method 

[4]. The outranking method applied is the PROMETHEE 

II method [4,5]. This is based on concepts with a physical 

interpretation that are easy for the decision-planner to 

understand. In addition, the nature of the outranking 

hypothesis introduced in the PROMETHEE method 

allows for the graduation of outranking credibility.  

This is the "... better than ..." relationship richer within 

the framework of the study of this paper than the “… at 

least as good as…” relationship of the ELECTRE method. 

When a si solution outranks a sk solution, it is indeed 

important to know the degree of credibility that can be 

attached to the statement “si outranks sk”. 

 

The principles of building and exploiting the ranking 

relations adapted to the problem are developed below.  

 

For each PIj, we consider,  

si >j sk, means strict preference of si over sk (1) 

iff PIj(si) > PIj(sk) + pj (pj: the preference threshold)  

si ≈j sk, (means indifference between si and sk) (2) 

iff -qj  PIj(si)-PIj(sk)  qj  (qj: indifference threshold)  
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si >wp
j sk, (means weak preference (wp) of si over sk) (3) 

iff PIj(sk) + qj < PIj(si) < PIj(sk) + pj  

 

For each pair of solutions (si, sk), we consider a 

preference index C(si, sk), 

𝐶(𝑠𝑖 , 𝑠𝑘) = 𝐶(𝑑(𝑠𝑖 , 𝑠𝑘)) (4) 

with, 

𝐶(𝑑(𝑠𝑖 , sk)) = {
0

(𝑑(si, sk) − 𝑞𝑗)/(𝑝𝑗 − 𝑞𝑗)

1

 

d(si,sk)= PIj(si) - PIj(sk)  

{
0

(𝑑(𝑠𝑖 , 𝑠𝑘) − 𝑞𝑗)/(𝑝𝑗 − 𝑞𝑗)

1

 

if  𝑑(𝑠𝑖 , 𝑠𝑘) ≤ 𝑞𝑗  

if  𝑞𝑗 < 𝑑(𝑠𝑖, 𝑠𝑘) ≤ 𝑝𝑗 

if  𝑑(𝑠𝑖 , 𝑠𝑘) > 𝑝𝑗  

if  𝑑(𝑠𝑖 , 𝑠𝑘) ≤ 𝑞𝑗  

if 𝑞𝑗 < 𝑑(𝑠𝑖 , 𝑠𝑘) ≤ 𝑝𝑗 

if  𝑑(𝑠𝑖 , 𝑠𝑘) > 𝑝𝑗  

Indifference 

Weak preference 

Strict preference 

 

Assuming a given weight of wj (wj>0) reflecting the 

importance of PIj, normalised (jwj=1), the preference 

index C(si, sk) is calculated as follows: 

𝐶(𝑠𝑖 , 𝑠𝑘) = jwj 𝐶𝑗(𝑑(𝑠𝑖, 𝑠𝑘)) (5) 

4.2.2. Exploitation of the ranking relationship  

The PROMETHEE method translates the outranking 

relationship through the information pertaining to the flow.  

 

For a solution si, we consider: 

ϕ−(si)= ∑ C(x, si)x , the entering flow or weakness of si; x 

is every solution other than si 
(6) 

ϕ+(si)= ∑ 𝐶(si, 𝑥)𝑥 , the leaving flow or power of si (7) 

ϕ (si) = ϕ+ (si) - ϕ− (si), the net flow or qualification of 

si 

(8) 

Finally, the complete PROMETHEE II pre-order (PII, III) is 

defined by 

{

𝑠𝑖  𝑃𝐼𝐼 𝑠𝑘, (𝑠𝑖  globally 𝑜𝑢𝑡𝑟𝑎𝑛𝑘𝑠  𝑠𝑘) iff ϕ (𝑠𝑖) ³ ϕ (𝑠𝑘)

𝑠𝑖  𝐼𝐼𝐼 𝑠𝑘, (𝑠𝑖  𝑖𝑠 𝑖𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑡𝑜 𝑠𝑘) iff ϕ (𝑠𝑖) = ϕ (𝑠𝑘)
 

(9)

(10)
 

 

The si solutions are positioned on a scale of preference 

whose states represent the solutions qualification ϕ (si). To 

visualise the ranking, the scale of preference is supported 

by a vertical and restricted axe, called Y-axis (

 
Figure 1). 

 

 

Figure 1. Y-axis 

 

Properties 

 
N, all solutions 

 

smax, ideal solution 

such that ϕ (smax)= 
Card(N)-1 

 

smean mean solution, 

such that: 

ϕ (smean)= 0 

 

smin anti-ideal 

solution, such that: 

ϕ(smax)= -Card(N)-1 

 

4.3. X-axis, solutions sorting scale 

4.3.1. Construction of the sorting relationship  

The sorting relationship is developed within the 

framework of the study of this paper. 

Sorting consists of examining the values of each 

solution’s PIj in order to put forward a recommendation 

from a set of possible recommendations, specified in 

advance. By linking a class to each recommendation, the 

problem boils down to the allocation of solutions to 

predefined classes. These classes are ordered and 

correspond respectively to the following judgements: 

"accepted or good", "pending or average" and "rejected or 

bad". The “good, average and bad” judgements are 

generally accepted by the decision-makers. The concepts 

relative to the definition of classes are defined below. 

 To express the users’ preferences, each PIj is segmented 
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into three leaves, respectively judged as good, average and 

bad. For each PIj, one or several threshold values are 

defined. These threshold values make it possible to express 

a judgment on each value of an PIj (Hata! Başvuru 

kaynağı bulunamadı.). 

 

Figure 2. Example of a PIj 
segmentation 

 

 

xj, yj : threshold  values for 

IPj 

The segmentation of each PIj indicator makes it possible 

to characterize each si solution by a triplet (a(si), b(si), c(si)), 

where a(si), b(si) and c(si) are respectively the number of 

indicators whose value is judged as good for the si solution, 

the number of indicators whose value is judged as average 

for the si solution and the number of indicators whose 

value is judged as bad for the si solution. 

The solutions characterized by the same triplet belong 

to the same class leaf. The potential number of classes is 

1+m+
𝑚(𝑚+1)

2
 (with m: number of PI). These classes form a 

partition of all the performances. An si solution belongs to 

just one class and one only. For any given system, some 

classes may be empty.  

A total order is defined for all class leaves. Let there be 

two X and Y classes defined respectively by the triplets (ax, 

bx, cx) and (ay, by, cy). The relation of preference (>) 

between the classes is defined as follows: 

𝑋 < 𝑌 ⇔  {

𝑐𝑥 > 𝑐𝑦
or
𝑐𝑥 = 𝑐𝑦 and 𝑎𝑥 < 𝑎𝑦

 
(11) 

The conditions of preference define a total pre-order of 

solutions as several solutions may be assigned to a same 

class leaf. In this case, the solutions are equivalent. The 

relation of preference (³) between the solutions is defined 

as follows: 

𝑠𝑖 ≤ 𝑠j  

⇔

{
 
 

 
 
𝑎(𝑠𝑖) = 𝑎(𝑠𝑗) and 𝑏(𝑠i) = 𝑏(𝑠𝑗) and 𝑐(𝑠𝑖) = 𝑐(𝑠𝑗)
or
𝑐(𝑠𝑖) > 𝑐(𝑠𝑗) 
or
𝑐(𝑠𝑖) = 𝑐(𝑠j) and 𝑎(𝑠𝑖) < 𝑎(𝑠𝑗)

 
(12) 

Lastly, the class leaves are partitioned into three 

aggregate classes: 

1 class defined by b = 0 and c = 0 (called "Good"); 

m classes defined by c = 0 and b  0 (called "Average"); 
𝑚(𝑚+1)

2
 classes defined by c  0 (called "Bad"). 

 

4.3.2. Exploitation of the sorting relationship 

The successive definitions allow us to organize these in 

a hierarchy of partitions (Hata! Başvuru kaynağı 

bulunamadı.). 

The class leaves are positioned on a scale of preference 

whose states represent the 1+m+
𝑚(𝑚+1)

2
 class leaves. The 

scale of preference is supported by the X-axis (Properties: 

Cmax: b = 0 et c = 0; Cmean: a = 0 et c= 0; Cmin: a = 0 et b = 0 

Figure 3). 

 

Figure 4. Hierarchy of partitions 

 

Properties: Cmax: b = 0 et c = 0; Cmean: a = 0 et c= 0; Cmin: a = 0 

et b = 0 

Figure 3. X-axis 

4.4. XY-plane, the rules of evaluation of the plan of 
preferences 

The plan of preferences (Figure 4) is obtained by 

crossing the Y-axis and the X-axis. The point of intersection 

of the coordinate axes is (Cmean, smean). Each si solution is 

represented by a coordinate point (Class leaf (si), ϕ (si)). 
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Figure 4. XY-Plane 

Properties: Ideal point (Cmax, smax); Anti-ideal point (Cmin, smin) 

The rules of evaluating preferences are illustrated and 

expressed as follows: 

Case 1 

Rule 1 
if {

𝑠1  =𝑋−𝑎𝑥𝑖𝑠  𝑠2

𝑠1  =𝑌−𝑎𝑥𝑖𝑠  𝑠2

 then 𝑠1 = 𝑠2 (13) 

Case 2 

Rule 2 
if {

𝑠1  >𝑋−𝑎𝑥𝑖𝑠  𝑠2

𝑠1  =𝑌−𝑎𝑥𝑖𝑠  𝑠2

 then 𝑠1 > 𝑠2 (14) 

Case 3 
Rule 3 

if {

𝑠1  =𝑋−𝑎𝑥𝑖𝑠  𝑠2

𝑠1  >𝑌−𝑎𝑥𝑖𝑠  𝑠2

 then 𝑠1 > 𝑠2 (15) 

Case 4 

Rule 4 
if {

𝑠1  >𝑋−𝑎𝑥𝑖𝑠  𝑠2

𝑠1  >𝑌−𝑎𝑥𝑖𝑠  𝑠2

 then 𝑠1 > 𝑠2 (16) 

Case 5 

Rule 5 

if {

𝑠1  >𝑋−𝑎𝑥𝑖𝑠  𝑠2

𝑠1  <𝑌−𝑎𝑥𝑖𝑠  𝑠2

 then 𝑠1 and 𝑠2 are 

  incomparable 

(17) 

 

With, "=": "is equivalent to"; ">": "is preferred to"; "<": "is 

not preferred to" 

 

The two axes discussed (via case 1, 2, 3, 4, 5 below) in 

the XY plane are complementary. The comparison between 

solutions according to the two axes of preference allows us 

to separate strong or robust preferences (case 1, 2, 3, 4) 

from the other non-robust preferences (case 5). A non-

robust preference corresponds to a contradictory ranking 

in accordance with the sorting and ranking axes. The 

contradictory rankings enable several preferred and 

incomparable solutions ({s1, s2}, case 5) to be identified in 

accordance with the two axes of preference. 

5. Conclusion and perspectives 

The actions described in this paper may be summed up 

as follows:  

- Motivate the theoretical background: there are no 

general AP-PI relation, 

- describe the concept of the plan of preferences, 

- formalize the two preference comparison relations 

(ranking and sorting) and the rules for reading a 

solution si (Class leaf (si), ϕ(si)). The ranking method 

applied is the PROMETHEE II method. The sorting 

method was constructed in the study of this paper. 

  

In view of the work undertaken, the results of this paper, 

especially the detailed modelling of the two relations of 

preference (ranking and sorting), contribute to the 

formalization of the issues of combinatorial optimization 

identified in [2]. The resolution of problems (A) and (B) 

(see Introduction and reformulated below), is now both 

conceivable, via optimization methods. 

 

(A) What are the best least good solutions with respect 

to the models of preference (ranking and sorting)?  

(B) Are there any solutions in this or that area of 

performance of the plan of preferences? 

 

To conclude, it is proposed to continue the work already 

conducted in the framework of this paper, as a strategy of 

problem-solving for general cases using the solutions to 

problems A and B: 

(1) Finding a solution to problem A with optimization 

methods and an initial definition of the performance zones 

accessible and non-accessible by the systems. 

(2) Drawing up experimental designs which are as 

broad-sweeping as possible in view of the calculation 

potential. 

(3) Applying the approach put forward in this paper to 

the dots calculated and deducing hypotheses on the 

structure of the performance levels. 

(4) Fine-tuning the investigation and validating or 

invalidating the hypotheses by the detailed solving of 

multiple problems of type problem B. 

References 

[1] X. Bai, J. S. David, J. J. Kanet, S. Cantrell, and J. W. Patterson, 

“Schedule Instability, Service Level and Cost in an Material 

Requirements Planning System,” International Journal of 

Production Research, vol. 40, no 7, pp. 1725–1758, 2002.  

DOI: 10.1080/00207540110119973. 

[2] M. Barth, D. Damand, and R. De Guio, "How Can We 

Ascertain, Understand and Interpret the Performance Level of 

A Production System? A Visual Method: “The Plan of 
Preferences,” Production Planning and Control, vol. 14, no 3, 

pp. 233–243, 2003. DOI: 10.1080/0953728031000089997. 

[3] A. L. Blumenthal, The Process of Cognition, in Englewood 

Cliffs (N.J.), Prentice-Hall, 1977. ISBN 0137229836, 

9780137229833. 

[4] J.P. Brans and P. Vincke, "A preference ranking organization 

method: (The PROMETHEE Method for Multiple Criteria 

Decision-Making)," Management Science, vol. 31, no. 6, 647-
656, 1985. DOI: 10.1287/mnsc.31.6.647. 

[5] J.P. Brans, P. Vincke, and B. Mareschal, "How to select and 

how to rank projects: The PROMETHEE method," European 

Journal of Operationnal Research, vol. 24, pp. 228-238, 1986. 

DOI: 10.1016/0377-2217(86)90044-5. 

[6] C.-Y. Chiang, W. T. Lin, and N. C. Suresh, “An Empirically-

a % 

b %

c %

0

0

100

0

100

0

100

0

0

Bad Average Good

Class

leaves
….+ m+1 1

Ranking

Sorting

smax

smin

smean

Cmin Cmax

Cmean

m….

https://doi.org/10.1287/mnsc.31.6.647
https://doi.org/10.1016/0377-2217(86)90044-5


Damand, International Journal of Applied Mathematics Electronics and Computers 08(04): 295-301, 2020 

- 301 - 

 

Simulated Investigation of the Impact of Demand Forecasting 

on the Bullwhip Effect: Evidence from U.S. Auto Industry,” 

International Journal of Production Economics, vol. 177, no.1, 

pp. 53–65, 2016. DOI: 10.1016/j.ijpe.2016.04.015 

[7] C. H. Chu and J. C. Hayya, “Buffering Decisions under MRP 

Environment: A Review,” Management Science, vol. 16, no. 4, 

pp. 325–33, 1988. 
[8] D. Damand, R. Derrouiche, and M. Barth.. “Parameterization 

of the MRP Method: Automatic Identification and Extraction 

of Properties,” International Journal of Production Research, 

vol. 51, no. 18, pp. 233–243, 2013. DOI: 

10.1080/00207543.2013.810819. 

[9] D. Damand, O. Ben Ammar, E. Lepori, and M. Barth, 

“Analysis Method of the Relations between MRP Parameter 

and Performance Indicator Based on a Literature Review,” in 
IFAC MIM 2013, Conference on Manufacturing Modelling, 

Management and Control, Saint Petersburg, IFAC 

Proceedings, vol. 46, no 9, pp. 377–382, 2013. DOI: 

10.3182/20130619-3-RU-3018.00606. 

[10] D.Damand, R. Derrouiche, M. Barth, and S. Gamoura. "Supply 

chain planning: potential generalization of parameterization 

rules based on a literature review," Supply Chain Forum: An 

International Journal, vol. 20, no 3, pp. 228-245, 2019. DOI: 
10.1080/16258312.2019.1589892. 

[11] A. Dolgui and C. Prodhon, “Supply Planning under 

Uncertainties in MRP Environments: A State of the Art,” 

Annual Reviews in Control, vol.31, no. 2, pp. 269–279, 2007. 

DOI: 10.1016/j.arcontrol.2007.02.007. 

[12] V. D. R. Guide and R. Srivastava, “A Review of Techniques 

for Buffering against Uncertainty with MRP Systems,” 
Production Planning and Control, vol. 11, no. 3, pp.223–233, 

2000. DOI: 10.1080/095372800232199. 

[13] S. C. Koh, M. H. Jones, S. M. Saad, S. Arunachalam, and A. 

Gunasekaran, “Measuring Uncertainties in MRP 

Environments,” International Journal of Logistics Information 

Management, vol. 13, no. 3, pp. 177–183, 2000. DOI: 

10.1108/09576050010326574. 

[14] S. C. Koh, S. M. Saad, and M. H. Joness, “Uncertainty under 
MRP-planned Manufacture: Review and Categorization,” 

International Journal of Production Research, vol. 40, no. 10, 

pp. 2399–2421, 2002. DOI: 10.1080/00207540210136487. 

[15] I. Pergher and A. Teixeira de Almeida, “A Multi-Attribute 

Decision Model for Setting Production Planning Parameters,” 

Journal of Manufacturing Systems, vol. 42, no. 224–232, 2017. 

DOI: 10.1016/j.jmsy.2016.12.012. 

[16] T. S. Lee, E. Everett, and J. R. Adam, “Forecasting Error 
Evaluation in Material Requirements Planning (MRP) 

Production Inventory Systems,” Management Science, vol. 32, 

no. 9, pp. 1186–1205, 1986. DOI: 10.1287/mnsc.32.9.1186. 

[17] D. N. P. Murthy and L. Ma, “MRP with Uncertainty: A Review 

and Some Extensions.” International Journal of Production 

Economics, vol. 25, no (1–3), 51–64, 1991. DOI: 

10.1016/0925-5273(91)90130-L. 

[18] B. Roy, Multicriteria methodology for decision aiding. Boston: 
Springer, 1996. DOI 10.1007/978-1-4757-2500-1. 

[19] F. Sahin, P. Robinson, and A. Narayanan, “Rolling Horizon 

Planning in Supply Chains: Review, Implications and 

Directions for Future Research,” International Journal of 

Production Research, vol. 51, no. 18, pp. 5413–5436, 2013. 

DOI: 10.1080/00207543.2013.775523. 

[20] V. Sridharan and W. L. Berry, “Master Production Scheduling 
Make-To-Stock Products: A Framework for Analysis,” 

International Journal of Production Research, vol. 28, no. 3, 

pp. 541–558, 1990. DOI: 10.1080/00207549008942735. 

[21] J. Xie, T. S. Lee, and X. Zhao, “Impact of Forecasting Error on 

the Performance of Capacited Multi-Item Production Systems,” 

Computers & Engineering, vol. 46, no. 2, pp. 205–219, 2004. 

DOI: 10.1016/j.cie.2003.12.020. 

[22] J. H. Yeung, W. C. K. Wong, and L. Ma, “Parameters Affecting 
the Effectiveness of MRP Systems: A Review,” International 

Journal of Production Research, vol. 36, no. 2, pp. 313–331, 

2000. DOI: 10.1080/002075498193750. 


