
International Journal of Applied Mathematics, Electronics and Computers 8(4): 226-231, 2020

e-ISSN: 2147-8228

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS

ELECTRONICS AND COMPUTERS

www.dergipark.org.tr/ijamec

International

Open Access

Volume 08
Issue 04

December, 2020

* Corresponding author. E-mail address: cigdem.bakr@gmail.com

DOI: 10.18100/ijamec.797074

Research Article

Distributed Environment Modeling using Path Compression Algorithm

Çiğdem Bakır a, * , Veli Hakkoymaz a

aYildiz Technical University, Department of Computer Engineering, Istanbul, 34220, Turkey

 ARTICLE INFO ABSTRACT

Article history:

Received 18 September 2020

Accepted 23 November 2020

 In distributed environment, some operations related to objects are performed. For example, objects

can be accessed or they can be moved. In our study, events related to objects (object-access,

object-move) were created as independent events. In this study, the distributed environment

simulation was performed and the effectiveness and success of the path compression algorithm,
which we proposed as a result of the experimental study, was demonstrated. The purpose of this

study is to show the effectiveness and benefits of the path compression algorithm. Path

compression algorithm is an efficient algorithm whose runtime is linear. With the path

compression, the long node chain that is formed while data objects are passing between the source
node and the destination is broken, so that the objects are retrieved fast and the cost of access is

reduced. This result is shown with experimental study by modeling the distributed environment.

It is shown comparative the results of the distributed environment simulation according to the

various Access/Move (%) rates using binomial distribution. When we use the path compression,
the maximum length and mean length of the chain decreases. Thus, with the path compression

algorithm, the long node chain created by the objects is broken, the cost of accessing the objects

is reduced, and fast access to the objects is ensured. In short, with our study, fast access to data is

ensured in a distributed environment.

This is an open access article under the CC BY-SA 4.0 license.

(https://creativecommons.org/licenses/by-sa/4.0/)

Keywords:

Distributed environment

Object access

Object move

Path compression

1. Introduction

A distributed computing environment is performed with

three types of nodes: storage, worker, and dissemination

[1]. In a distributed environment, objects are subjected to

a number of processes. For example, objects in the given

data table can be queried, listed, deleted, updated, or new

objects can be saved. In a distributed computing

environment, objects can be kept in tables to perform these

processes, and the processes related to the objects can be

performed through these tables. In this study, in order for

the processes related to the objects, the object-based

distributed environment was modeled and the distributed

environment simulation was carried out.

In this study, access and movement of objects, which

are among these performed processes related to objects,

are discussed. However, some problems arise during

access to the object. It is because when we want to access

an object, it is needed to look at all the nodes that the object

passes until we reach the node where the object resides.

Data and function transmission is performed from node to

node. In this case, the cost of access increases because long

chains are formed between the nodes during access to the

object. In our study, this problem was addressed and by

carrying out system modeling in the object-based

distributed environment, the path compression algorithm

providing effectiveness in access to the object was

proposed. The aim of our study is to increase the

performance through breaking the emerging long chains

by the path compression algorithm. With the path

compression, by breaking the long chain between the

objects passing from the source node to the target node,

quick access to the objects is enabled and the cost of access

http://www.dergipark.org.tr/ijamec
https://doi.org/10.18100/ijamec.797074
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0001-8482-2412
https://orcid.org/0000-0002-3245-4440

Çiğdem Bakır et al., International Journal of Applied Mathematics Electronics and Computers 08(04): 226-231, 2020

- 227 -

is reduced. In addition, through performing a distributed

environment simulation, the effectiveness of the proposed

algorithm was shown. With the conducted experimental

study, the success of the path compression algorithm was

also expressed.

The remaining parts of this study are arranged as

follows: the related and similar studies are given in the 2nd

part, our solution is discussed in the 3rd part, the

experimental study is presented in the 4th part and the

results are given in the last part.

2. Related Works

A distributed computing environment can be modeled

with a graph data structure. A graph is a data structure

consisting of a set of nodes and edges connecting these

nodes to one another [2]. If G signifies a graph, its

definition is as follows:

E)(V, =G (1)

 vN},… v2,{v1, = V(G) (2)

eM} ,… e2, {e1, = E(G) (3)

 Hence,

 VxVE  (4)

 The distributed environment is performed with three

types of nodes: storage, worker, and dissemination [3].

The edge indicates the transition of a data object from one

node to another. The storage node stores objects

permanently. The dissemination node allows an object to

be copied when the object is requested from itself. It

checks whether the worker and the dissemination node

have the authorization to import objects (with the privacy

policy). The worker node runs programs. The

dissemination node stores the frequently used objects in

groups [4].

 The distributed environment is performed with three

types of nodes: storage, worker, and dissemination [3].

The edge indicates the transition of a data object from one

node to another. The storage node stores objects

permanently. The dissemination node allows an object to

be copied when the object is requested from itself. It

checks whether the worker and the dissemination node

have the authorization to import objects (with the privacy

policy). The worker node runs programs. The

dissemination node stores the frequently used objects in

groups [4].

 In earlier studies in the literature [3,4,5], a distributed

label model was developed. a separate label was used for

each transaction (read, write) performed on the object, and

only read and write transactions were carried out. We used

the path compression algorithm to increase data access

speed and reduca data cost. We showed the advantages and

success of our proposed algorithm with experimental study.

Since we used statistical approaches in distributed

environment simulation, our study has been more

successful than other studies [6, 7]. Moreover, unlike

previous studies [4, 8], data confidentiality and data

consistency were realized simultaneously.

 The scientific contribution of this model is necessary

to reduce the time and calculation cost of accessing the

data. The purpose of this study was to develop a method

that allows different users to access the data in a distributed

environment. Our study is aim, with the path compression

method, the data are accessed faster and the cost of access

is reduced.

To be able to perform reading and writing and ensure

sending data and function, worker nodes request a copy of

the objects from the dissemination node.

 A distributed environment includes one or more

nodes from each node [4]. In this way, it performs data

shipping (function/calculation) from node to node. With

different nodes, the data and function shipping is achieved

more rapidly. In addition, in multiple nodes, reading and

writing operations are performed on objects [9].

 Definition: Data shipping is the sending of the data

from the location (node) of it to the location (node) where

the calculation was made. The data is passed for also the

calculation of the values of the copied objects. All the

processes are performed on the client [10].

 Definition: Function shipping is the sending of the

calculations from their node to the node where the data

presents. All processes and queries are performed on the

server [3].

Figure 1. Providing the distributed environment with three
types of nodes

 Figure 1 shows the updating of object groups in the

distributed environment. To ensure the object update, the

worker and dissemination nodes take the object from the

storage node. In this way, reading and writing processes,

data shipping and function shipping can be performed on

the object. When any object is updated, the storage node

also updates that object [11]. The reading and writing

Çiğdem Bakır et al., International Journal of Applied Mathematics Electronics and Computers 08(04): 226-231, 2020

- 228 -

processes on the updated object are performed by the

worker node. The dissemination node controls the

information flow according to security and privacy

policies. If there is authorization, the worker node takes the

object from the dissemination node and performs the

required actions [12].

3. Method

The data are expressed as objects, and various names are

given to these objects. An object is represented by oid,

which indicates the identity of this object. The oid consists

of the host that indicates where the object is stored, and

parts showing which object is on the host (that is, the

object number).

3.1. Path Compression

The path is a graph structure that shows the transmission

of the data objects by the actors (nodes). The nodes are

connected to each other in the form of chains. As an object

moves between the actors, the object identifier (oid) that

shows the identity of the object is updated to include the

next address of the object. For example, in Figure 2, an

object (oid1) is transferred to the storage nodes A1, A2, A3,

A4, and A5, respectively. When the object is transferred,

only the address information remains on the previous node

and the object is transported to the new node. When the

object is moved from the A4 storage node, it is transferred

to node A5 and the new address is saved as oid1(4) to node

A4. In other nodes where the object is passed, the address

(reference) of the object remains (oid1(1)–oid1(2)–oid1(3)–

oid1(4)). The object shown with oid1(5) is actually located

in node A5. Oid1(5) in A5 shows the new oid value of the

object. Because object movements create long chains

between nodes in this format, the cost of accessing the

object increases. In order to prevent long chains, the path

compression method is used, which gives the result shown

in Figure 3. Path compression is the process of updating

the reference in each node on the path, which starts from

the root node to the node where the object is currently

located, with the current location address (See Algorithm

1).

3.2. Object Access Process Example

If we desire to locate an object without using path

compression, it needs to look at all the nodes that the object

passes until the desired node is reached. In Figure 2, when

the position of an object in Node A5 is asked to Node A1,

nodes A1, A2, A3, A4, and A5, where the object address is

stored, must be accessed, respectively. However, with the

path compression method shown in Figure 3, it goes

directly to node A5 (A1 gives the object address in A5

directly). Thus, fast access to the object is possible, and the

cost of access is reduced.The path compression algorithm

(Algorithm 1: Algorithm Pathcompress) is an efficient

algorithm with linear runtime.

Algorithm 1. Path Compression Algorithm

Algorithm YolKısalt (Start:Düğüm)

// Start node

1: X ←Start;

2: Y ←Start;

3: if (X=null or next[X]==null) return;
4: // determine previous node to probe (Y)
5: while (next[X]!=nll) do
6: Y←X;
7: X←next[X];

8: end while

9: // update display
10: Z←Start;
11: while (Z!=X) do
12: next[Z]←next[Y];

13: Z←next[Z];
14: end while
15: return;

Figure 2. Node chain formation

Figure 3. The new condition that occurs as a result of the path
compression

3.3. Distributed Environment Simulation

In a distributed environment, some operations related to

objects are performed. For example, objects can be

accessed or moved. In our study, events related to objects

(object-access and object-move) were created as

 (1)

 (2)

 (3)

 (4)

 (5)

Çiğdem Bakır et al., International Journal of Applied Mathematics Electronics and Computers 08(04): 226-231, 2020

- 229 -

independent events, and a distributed environment

simulation was performed. The purpose of this study was

to show the effectiveness and the benefits of the path

compression algorithm. In the distributed computing

environment, let us assume that there are n nodes and k

objects. For example, let these n nodes be denoted as d[1],

d[2], …, d[n].

 Each node has a local object table. Let k objects be

denoted as o1, o2, …, ok. The object table on each node will

contain the object information showing that it resides on

this node or contains the address of the object if it is in

another node. For each node, there is a notation similar to

that shown in Figure 4. Initially, objects are randomly

assigned to nodes. This is accomplished with the function

F: oi → d [j], for 1 ≤ i ≤ k (random (1, n)). Each oi object

is assigned to any d[j] node. We used five functions related

to the objects:

Figure 4. a) d[1] local object table, b) d[2] local object table, c)
d[n] local object table)

 Function 1: object_access (i:object, j:node): This

function looks at the local object table of node j for object

i to be accessed. If the address shown by this node is −1, it

means that the object is located on this node. If not, the

node address is retrieved from the j node object table and

is assigned to j. This process continues until the object is

found. This function returns the chain length.

 Function 2: object_move (i:object, j:source node,

x:destinion node): With this function, object i is moved

from the j node, in which it is currently located, to the x

node. The node where all objects reside is stored in the

general object table.

 The global object table stored in distributed systems is

shown in Table 1. This global object table shows on which

node each existing object is. It is always up to date.

Furthermore, the object_access(i, j) and object_move(i, j,

x) functions operate independently of each other.

Table 1. General Object Table

 Function 3: break_chain (i:object, j:source node,

x:destinion node): The length of the chain of the i object

accessed by the object_access(i, j) function is checked.

The length of the chain is equal to the number of nodes that

are used to access object i. A threshold value T is

determined. If the length of the chain is equal to or greater

than the threshold value, the i object breaks the chain

starting from the j node to the x node where the object

resides. If the chain length is less than the threshold value,

this function is not executed. The appropriate values are

determined by changing the threshold value.

 Function 4: Book_keeping (i:object, L:chain length):

The length of chain L is calculated for each i object to be

accessed. The keeping of the records by this function is

shown in Table 2. In this simulation, by running the

DriverForObjAccess() and DriverForObjMove()

functions at certain rates, we calculated the average and

the maximum chain lengths. By changing the threshold

value, we re-calculated the maximum and the average

chain lengths.

Table 2. L Chain for Each Object Accessed with
Z=Book_Keeping (I:Object, L:Chain_Length)

Object (i) 3 5 2 8 7 1 …. Zmax

Node

Length (L)

 Function 5: compute_ statistics (): It records the

length of the chain of the object, which is as much as

Zmax, being accessed. When objects with a length equal

to Zmax are accessed, the mean chain length is calculated

by assuming that sufficient statistics are collected. The

mean length of the chain is determined by taking the ratio

of the total length of all the objects accessed to the number

of objects accessed. The mean chain length is calculated as

follows:

 𝑀𝑒𝑎𝑛 𝑐ℎ𝑎𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ = ∑ 𝐿[𝑖]

𝑍𝑚𝑎𝑥

𝑖=1

/𝑍𝑚𝑎𝑥 (8)

All objects

 Object Address

o1

o2

…

…

…

ok

Çiğdem Bakır et al., International Journal of Applied Mathematics Electronics and Computers 08(04): 226-231, 2020

- 230 -

4. Experimental Study

In the distributed environment, some operations related

to objects are performed. For example, objects can be

accessed or moved. In our study, events related to objects

(object-access and object-move) were created as

independent events, and a distributed environment

simulation was performed. The purpose of this study was

to show the effectiveness and the benefits of the path

compression algorithm. In our study, access to the objects

was shown with “Access,” and the moving of the objects

was shown with the “Move” operations.

 In the distributed environment, system modeling was

performed in two ways: static and dynamic. In the static

environment, while access to the objects was performed

frequently, the moving of the objects was performed less.

In contrast, in the dynamic environment, while access to

the objects was performed less, the moving of the objects

was performed more frequently. In our study, modeling

was carried out for some processes related to the objects in

the static and the dynamic environments.

Figure 5. Maximum and mean chain length for T=40 using
binomial distribution

 In Figures 5, the results of the distributed environment

simulation according to the various Access/Move (%)

rates, respectively, for T = 40, are shown using the

binomial distribution. In these graphics, the graph

comparatively shows the maximum chain length and the

average chain length for the cases in which we used and

did not use the path compression algorithm. In this graph,

T is the threshold value, and if the chain length is equal to

or greater than the threshold value, the chain length is

broken. Each column in the graph shows the maximum and

the average chain lengths in the cases in which we used

and did not use the path compression algorithm,

respectively. In the graph, the maximum and average chain

lengths are calculated by increasing the amount of access

to the objects via the Access/Move (%) rates, such as

50/50, 60/40, 70/30, 80/20, and 90/10, and by decreasing

the number of moving objects. When we increased the

amount of access to the objects and used the path

compression algorithm, the average chain length was

broken more.

5. Conclusion

 Flow of data objects in a distributed environment has

been modeled via graph. While accessing the objects, a

long chain may be formed between nodes. With path

compression method this chain is broken; cost of accessing

objects is lowered; performance gain is attained.

Simulation of the distributed environment was carried out

through an experimental study, and in addition to the

evaluation of the algorithm, its effectiveness was also

demonstrated by the experimental study.

 Finally, an important point to consider in the path

compression algorithm is that the object access frequency

is high and that the path compression process is rarely

performed. To guarantee this, the path compression

algorithm must be run only when the length of the chain

exceeds a certain threshold value. This threshold value is

a parameter that must be determined as a result of careful

evaluations or experimental studies. If the threshold value

is selected as big, object access will slow down because of

the long chain formation. On the other hand, if it is selected

too small, the cost of accessing the object will increase

because the path compression algorithm runs frequently.

Author's Note

Abstract version of this paper was presented at 9th

International Conference on Advanced Technologies

(ICAT'20), 10-12 August 2020, Istanbul, Turkey with the

title of “Object Based Distributed Environment Modelling

and Simulation”.

References

[1] W.Cheng, D.R.Ports at all, “Abstractions for Usable

Information Flow Control in Aeolus”, 2012 Usenix Annual

Technical Conference, 2012, pp.1-13. DOI:

10.5555/2342821.2342833

[2] H.Esfandiari, M.Hajigohayi at all, “Streaming Algorithms for

Estimating the Matching Size in Planar Graphs and Beyond”,

ACM Transactions on Algorithms, 2018, vol 14, no.8. DOI:

10.1145/3230819
[3] J. Liu and M. D. George, “ Fabric: A Platform for Secure

Distributed Computation and Storage”, ACM Symposium on

Operating Systems Principles and Implementation (SOSP),

Çiğdem Bakır et al., International Journal of Applied Mathematics Electronics and Computers 08(04): 226-231, 2020

- 231 -

2009, pp.321-334. DOI: 10.1145/1629575.1629606

[4] J.Liu, O.Arden at all, “ Fabric:Building Open Distributed

Systems Securely by Construction”, Journal of Computer

Security, vol 25, no.4-5, 2017, pp. 367-426. DOI: 10.3233/JCS-

15805

[5] M.Alizadeh, S.Abolfazli at all, “Authentication in Mobile

cloud computing:A survey”, Journal of Network and Computer
Applications, vol 61, 2016, pp.59-80. DOI:

10.1016/j.jnca.2015.10.005.

[6] R.Barejee, S.Chatterjee at all, “Performance of a Discrete

Wavelet Transform Based Path Merging Compression

Technique for Wireless Multimedia Sensor Networks”,

Wireless Personal Communications, vol.4, 2019, pp.57-71.

DOI: 10.1007/s11277-018-6008-7

[7] J.Janet, S.Balahrishnan at all, “Optimizing Data Movement
within Cloud Environment using Efficient Compression

Techniques”, International Conference on Information

Communication and Embedded Systems, 2016.

[8] J.Cui, L.Shao at all, “Data aggregation with end-to-end

Confidentiliaty and Integrity for large-scale Wireless Sensor

Networks”, Peer to Peer Networking and Applications, vol.25,

no.5, 2018, pp. 1022-1037. DOI: 10.1007/s12083-017-0581-5

[9] Y. Vural and Ş.Sağıroğlu, “ A review on Enterprise
Information Security and Standards”, Journal of the Faculty of

Engineering and Architecture of Gazi University, vol 23, no.2,

pp. 507-522, 2008.

[10] O.Arden and A.C.Myers, “A calculus for flow-limited

authorization”, IEEE Computer Security Foundations, 2016,

pp. 135-149. DOI: 10.1109/CSF.2016.17

[11] Ç.Bakir and V.Hakkoymaz, “Dağıtık Veritabanında Veri
Etiketleme ile Bilgi Akış Denetimi”, 5.Ulusal Yüksek

Başarımlı Hesaplama Konferansı, Esenler İstanbul, 2017.

[12] A. C.Myers and B.Liskov, “Protecting Privacy using the

Decentralized Label Model”, ACM Transactions on Software

Engineering and Methodology, vol 9, no.4, pp. 410-442, 2000.

