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 Importance of resource planning at airports, ports, logistic centers and similar operation points is 

increasing significantly each day due to competitions, intensities and irregularities in operations. 

Multi-objective optimization algorithms try to reach the user defined objectives of the related 

operations as much as possible but the performance of these algorithms starts to differ while the 

number of defined Key Performance Indicators (KPI’s) are increasing. In multi-KPI optimization 
algorithms, there are many issues and parameters to consider which affect the optimizer 

performances such as; relationship between KPI’s, the number of KPI’s, number of resources, 

tasks. In addition, due to some specific business rules in the operation, not every resource can be 

assigned to every task and the optimization algorithm needs to consider these rules when 
generating allocation plan. Within the scope of this study, an optimization algorithm which is 

developed by TAV Technologies is used to analysis optimizer performance changes according to 

the number of defined KPI’s. For the same resource and task group, the optimization algorithm 

configured with different KPI combinations and run repeatedly. Except for the KPI definitions, all 
other optimizer inputs were kept constant in all tests and the results were compared with each 

other. Specific business rules were ignored in this study to analysis test results clearly. 
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1. Introduction 

Efficient resource planning contains complex problems in 

industries with intensive operations. According to Eurocontrol 

Report, total flight delay cost for aviation stakeholders and 

consumers is estimated at EUR 11.2 billion in 2012 for 

European Airspace [1]. Optimizing resources with considering 

schedules, costs, resource counts and other KPI’s is extremely 

difficult because in such industries there are always many 

stakeholders involved in the operations with different KPI 

focuses [2]. For example, one of operation unit called former in 

shipping industry usually does not care transit inventory costs 

but this is a major logistic cost for another operation unit called 

later [2]. Also, stochastic nature of these operation networks 

can complicate the resource planning process [3]. It was 

published in an article that only %50 of vessels are arriving on 

scheduled time because of uncertainties in the shipping 

operations at sea and ports [4]. The importance of KPI’s can 

vary from stakeholders to stakeholders as well as industry to 

industry. In air and sea transport, costs could be one of the most 

important KPI but in military operations timing is above all else 

[5].  

Complexity in resource optimization occurs because of 

resource and task counts, resource qualifications, task 

requirements, business rules, multi-stakeholder and other 

external factors. There are more than 3 million combinations 

that need to be evaluated in a system that will assign only 10 

tasks to 10 resources. Resource and task matching combination 

selection is based on optimizers KPI’s definitions and business 

rules. It is not possible to achieve maximum success for each 

KPI in an optimizer which is configured with several KPI’s [6]. 

Also, performance of each KPI depending on its weight and the 

effect of other KPIs according to their weight may differ [7]. In 

different business cases of different industries, several research 

has been done to solve the Multi-KPI optimization problems 

and the difficulty of the problem has been mentioned in all these 

researches [8] - [12]. In addition, publications examining the 

advantages and disadvantages of the algorithms obtained in 
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these studies have been published [13]. Two main approaches 

have been followed by the scientist in the solution of the 

problem: first one is named as classical method in which 

optimal result is searched in each run and the second one is 

named as evolutionary method like genetic algorithm in which 

not a single result but possible candidates could be determined 

[14]. The weakness of these methods are widely researched in 

the literature but major deficiency with most of the classical 

models is on handling more than one KPI [15]. Two stage 

Monte Carlo solutions are also tested by scientists in large 

stochastic networks and promising results gathered [16] – [19].  

In the scope of this study, as TAV Technologies, after 

examining the methods mentioned above we developed a 

unique, multi-KPI definable, mobile resource planning 

algorithm for airport and examined the effects of multi-KPI 

configurations of the optimizer on KPI performances. Due to 

commercial concerns, technical details related to the algorithm 

developed within the scope of this study were not shared. It 

should be noted that, several normalization methods used in 

iterations to compare KPI’s with each other. 

2. Simulation Definitions 

Tests were designed as airport ground handling mobile 

resource optimization simulation. In each test, same 250 ground 

handling service tasks and same 50 ground handling service 

resources are used. These tasks represents cleaning, passenger 

boarding, docking, etc. on the airport apron for each flight and 

resources are the people who will accomplish these tasks. To 

simulate the physical difficulty of these tasks, different 

workload values are defined for all tasks. The total workload 

value of all tasks is determined as 9000 which means that 

average workload for a single task is 36. Each task has different 

starting/ending point and in order to compare each test result 

with each other, the starting/ending points for all tasks are kept 

constant in each test.  

"Workload Balancing" and "Total Distance Minimizing" 

KPIs were used in the tests. With Workload Balancing KPI 

(WLB), it is desired to distribute an equal amount of workload 

to mobile resources. With the Total Distance Minimizing KPI 

(TDM), it is aimed to reduce the distance travelled by the 

resources in the apron while performing the duties of the 

resources. To reduce the distance, it was necessary to assign the 

task to the resource closest to the starting point of the task. Of 

course, when the resource finishes a task, the current position 

of the resource becomes the ending position of the task. 

As shown in Table-1, in order to make the results more 

accurate, the tests with the same optimizer configuration were 

repeated 5 times. In the optimizer configuration 1, both KPIs 

are deactivated and in this case, the resource allocations of tasks 

must be executed randomly without any restrictions. In 

optimizer configuration 2, optimizer will allocate resources 

with only considering Workload Balancing KPI and this case 

represent single KPI conditions. Another single KPI conditions 

is tested with optimizer configuration 8 for Total Distance 

Minimizing KPI. For all other optimizer configurations, the 

multi KPI condition was tested by changing the KPI weights. 

 

Table 1. Optimizer test configurations 

 

Optimizer 
Configuration 

ID’s 

WLB 

Weight 

TDM 

Weight 
Test ID’s 

Conf 1 – NO 

KPI 
- - 

Test-1, Test-9, Test-

17, Test-25, Test-33 

Conf 2 
%100 %0 

Test-2, Test-10, Test-

18, Test-26, Test-34 

Conf 3 
%90 %10 

Test-3, Test-11, Test-

19, Test-27, Test-35 

Conf 4 
%70 %30 

Test-4, Test-12, Test-

20, Test-28, Test-36 

Conf 5 
%50 %50 

Test-5, Test-13, Test-

21, Test-29, Test-37 

Conf 6 
%30 %70 

Test-6, Test-14, Test-

22, Test-30, Test-38 

Conf 7 
%10 %90 

Test-7, Test-15, Test-

23, Test-31, Test-39 

Conf 8 
%0 %100 

Test-8, Test-16, Test-

24, Test-32, Test-40 

 

3. Simulation Results 

3.1. Single KPI Performances of Optimizer 

As a beginning, the single KPI performances of the 

developed optimizer is tested by comparing test results of Conf 

1 & Conf 2, Conf1 & Conf 8. With Conf 1 configuration, there 

is no KPI definition for the optimizer so comparing Conf 1 tests 

with Conf 2 tests shows how successful is the workload 

balancing KPI when it’s enabled.  

As it can be seen in Figure-1, optimizer tries to distribute 

tasks considering their workloads between resources. In the 

Test-1 (No-KPI Configuration), the total workload of the tasks 

that each resources get as a result of optimizer allocation vary 

between 0 and 400. However, when the WLB KPI is activated 

as a single KPI in Test-2, the total workload of tasks received 

by the resources as a result of allocation vary between 155 and 

210. In other words, when the WLB KPI is activated, the 

optimizer tries to distribute the tasks to the resources with 

considering workload balance. Thus, people as resources 

working in the same shift will get tired equally and employee’s 

dissatisfaction will not be experienced. 
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Figure 1. Work Balancing KPI effect 

As seen in Figure-2, the tests mentioned in Figure-1 were 

repeated 5 times and results were analyzed for each test results. 

In the tests performed with the No KPI configuration, the 

average of the coefficient variant is 0.42, and in the tests with 

100% WLB configuration, the CV average is 0.07. As a result 

of these test Workload Balancing KPI function’s average 

performance is calculated as 83%. 

 

 

Figure 2. CV’s of Workload Balancing KPI effect tests 

Another KPI that is as important as workload balancing in 

the efficient and balanced use of resources is to reduce the 

distance travelled by the resources during the shifts. The way 

to achieve this is to assign the tasks to the nearest resources. 

However, using CV in the performance measurement of this 

KPI will not be meaningful because the aim of the optimizer is 

to reduce the total distance travelled by all resources, not 

balancing the distances travelled by resources. 

 

 

Figure 3. Total Distance Minimizing KPI effect 

After Workload Balancing KPI as a single KPI performance 

tests, Test-1 and Test-8 results were examined together as 

shown in Figure-3 to measure the performance of Total 

Distance Minimization KPI. After TDM KPI is activated, a 

significant decrease has been observed in the distance travelled 

by each resource during the operations. In fact, some resources 

have not been assigned to any task. 

 

 

Figure 4. Sum of total distances travelled by resources  

As seen in Figure-4, the tests mentioned in Figure-3 were 

repeated 5 times and sum of total distances of resources were 

analysed for each test result. In the tests performed with the No 

KPI configuration, the average of the sum of total distances 

travelled by resources is 89 km, and in the tests with 100% 

TDM configuration, the average of the sum of total distances 

travelled by resources is 5.8 km. If the perfect optimization 

could be achieved, this value would be 2 km because the test 

was constructed in this way. As a result of these tests Total 

Distance Minimizing KPI functions maximum performance is 

calculated as 95.7%. 

3.2. Multi KPI Performances of Optimizer 

As seen in Figure-5, the results of 5 tests defined in all 

configurations were taken together and analyzed together. 
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Figure 5. Optimizer performance change against KPI count and the 
effect of KPI's on each other   

When the results of all the tests are analysed together, the 

equal distribution of the workload is provided to a certain extent 

due to randomness in the tests performed with No KPI 

configuration. The same condition is not valid for the Total 

Distance Minimizing KPI because it can approach the worst 

possible performances with the No KPI configuration. 

The WLD can have very close values to the best performance 

until its weight drops to 50%. Under 50% weight performance 

deteriorates very quickly. 

TDM achieves its best performance with a logarithmic 

relationship with its weight. 

4. Conclusions 

As a result of the tests carried out, it is seen that, KPI’s can 

affect each other in a different way. The best result for a KPI is 

achieved when that KPI is configured in the optimizer as a 

single KPI. However, for some KPI’s like workload balancing, 

the best results can still be achieved up to a certain weight. In 

addition, for KPIs that are not conflicting with randomness, 

good results can be obtained even optimizer is not configured 

with a KPI. 

For some KPIs like TDM, the weight of KPI can directly 

affect its performance. While no KPI definition has been made 

on optimizer, the results can be very close to the worst results 

for these KPI’s. 

When the number of KPI’s reaches to higher numbers, 

combinations of different weights of KPIs should be examined 

in detail in order to achieve optimum performances. In some 

conditions, it possible to see that some KPIs do not affect each 

other.  

In addition, in the tests carried out in this study, more 

resources were used than the required. When the number of 

resources has been reduced slightly, it is seen that in single KPI 

configurations the performance of the TDM decreases and the 

performance of the WLB remains almost same. However, at the 

point where the number of resources is more reduced, different 

results can be observed. Due to the number of different 

resources and tasks, KPI performances may change at different 

times of the year or even day. It will be useful to analyze the 

effect of the number of resources and tasks on these KPI 

performances in future studies.  

When all the results and researches are evaluated together, it 

can be seen that operation-specific analysis will be useful in 

multi-KPI optimizations.  It is not easy at this stage to achieve 

the best results in any business environment with a generic 

model. 

Author's Note 

Abstract version of this paper was presented at 9th 

International Conference on Advanced Technologies 

(ICAT'20), 10-12 August 2020, Istanbul, Turkey with the title 

of “Performance Analysis in Multi-KPI Optimizations”. 
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