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Abstract In this paper, particle swarm optimization is proposed for finding the global minimum of continuous functions and tested on 

benchmark problems. Particle swarm optimization applied on 21 benchmark test functions, and its solutions are compared to those former 

proposed approaches: ant colony optimization, a heuristic random optimization, the discrete filled function algorithm, an adaptive random 

search, dynamic random search technique and random selection walk technique. The implementation of the PSO on several test problems 

is reported with satisfactory numerical results when compared to previously proposed heuristic techniques. PSO is proved to be successful 

approach to solve continuous optimization problems. 
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1. Introduction 

The main goal of function optimization is to find a global solution 

of an objective function throughout the iterations. The swarm 

intelligent optimization algorithms are simulate the nature, mainly 

animals. Particle swarm optimization(PSO) proposed in 1995 by 

Eberhart and Kennedy and based on defining the social behaviours 

of the living beings.[1]. In 2002, Clerc and Kennedy added 

constriction coefficients and ameliorate the PSO much better[2]. 

Due to advancement of computer technologies in the computer 

science area, continuous function optimizations have become 

popular among the researchers. There are abundant test functions 

used in the literature to measure the proposed algorithms’ 

performance by the scientists. Many heuristic methods and 

techniques are proposed and applied for solving these continuous 

functions like discrete filled function[3], dynamic random search 

technique[4], ant colony optimization[5], a heuristic random 

optimization[6], an adaptive random search technique[7], random 

selection walk[8], fruit fly optimization[9], biogeography-based 

optimization algorithm[10], flower pollination algorithm[11], 

continuous action-set reinforcement learning automata model[12], 

artificial bee colony algorithm[13], genetic algorithm[14] 

respectively. PSO is proved to be successful approach to solve 

continuous optimization problems. All the selected benchmark 

problems are minimization problems in this work. In this paper 

PSO applied on 21 benchmark test functions and were used to 

compare with the results of ant colony optimization(ACO), a 

heuristic random optimization(HRO), the discrete filled function 

algorithm, an adaptive random search technique(ARSET), 

dynamic random search technique(DRASET) and random 

selection walk(RSW) technique. PSO scrutinizes reasonable 

quality solutions much rapidly than other swarm based 

evolutionary algorithms. In this paper PSO’s performance and 

robustness are shown for the aforementioned techniques. The 

author’s findings show that for 21 benchmark problems PSO’s 

results are quite competitive. The rest of the paper organized as 

follows; section two covers the information of proposed PSO 

algorithm, function optimization problems are given in section 

three and finally conclusion stated in section four.  

 

2. The Proposed PSO Algorithm 

The PSO became a very popular evolutionary algorithm and 

successfully applied for a wide range of continuous optimization 

functions. The algorithm exploits the solution space by improving 

the trajectories as moving particles in multidimensional solution 

space. Population of PSO consists of personal positions called 

particles, denoted 𝑋𝑖
⃗⃗  ⃗. Each particle has velocities 𝑉𝑖⃗⃗  and a cost 

function evaluated by using the particle’s position. Positions and 

velocities are adjusted and cost function evaluated as the particle 

moves at each time step(𝑴𝒊𝒏 𝒇(𝒙), 𝒙𝒏 = [𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … , 𝒙𝒏]). n 

represents the number of decision variables. 𝒙𝒏 ∈ [𝑳𝑩,𝑼𝑩],   𝒏 =

𝟏, 𝟐,… , 𝒏. 𝑳𝑩 and 𝑼𝑩 are the lower and upper bounds for the 

variable 𝒙𝒏 respectively. When the particle moves better position 

than any found formerly, personal best positions explored so far 

are stored in 𝑃𝑖
⃗⃗ . The difference between personal best position and 

particle current position is added to velocity. Thus velocities are 

used to move particles better coordinates. 

 

𝑽𝒊𝒋(𝒕 + 𝟏) = 𝒘𝑽𝒊𝒋(𝒕) + 𝒄𝟏𝒓𝟏𝒋(𝒕)(𝑷𝒊𝒋(𝒕) − 𝑿𝒊𝒋(𝒕)) +

𝒄𝟐𝒓𝟐𝒋(𝒕)(𝒈𝒋(𝒕) − 𝑿𝒊𝒋(𝒕))     (1) 

 

Velocity consists of inertia term, cognitive component and social 

component as stated equation 2. Where w represents the inertia 

weight, 𝒓𝟏𝒋 and 𝒓𝟐𝒋 are uniformly distributed random numbers 

between the range of 0 and 1. 𝒄𝟏 and 𝒄𝟐 are  constants, called 

cognitive and social scaling parameters; 𝑽𝒊𝒋 the velocity of the 

particle, 𝑷𝒊𝒋 the personal best fitness value of the particle and 𝒈𝒋 

represents the best position and the global best in the whole 

population. 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1Istanbul University, School of Business, Department of Quantitative 

Methods, Avcılar Campus 34320 Istanbul TURKEY 

* Corresponding Author: Email: muhlisozdemir@istanbul.edu.tr 

Orcid ID: http://orcid.org/0000-0002-4921-8209  

mailto:muhlisozdemir@istanbul.edu.tr
http://orcid.org/0000-0002-4921-8209


This journal is © Advanced Technology & Science IJAMEC, 2017, 5(3), 47–52  |  48 

 

𝑿𝒊𝒋(𝒕 + 𝟏) = 𝑿𝒊𝒋(𝒕) + 𝑽𝒊𝒋(𝒕 + 𝟏)    (2) 

 

Each particle represents a position and a potential solution of the 

search space. As stated eq. 3 𝑿𝒊𝒋 represents the position of the 

particle and is updated by the 𝑽𝒊𝒋(𝒕 + 𝟏) in eq. (2) throughout the 

algorithm. 

As stated before Clerc and Kennedy added constriction 

coefficients in 2002[2], and therefore eq. 2 reorganized and used 

in this work as follows; 

 

𝑽𝒊𝒋(𝒕 + 𝟏) = 𝝌[𝑽𝒊𝒋(𝒕) + 𝝓𝟏(𝑷𝒊𝒋(𝒕) − 𝑿𝒊𝒋(𝒕)) + 𝝓𝟐(𝒈𝒋(𝒕) −

𝑿𝒊𝒋(𝒕))]       (3) 

 

𝝌 =
𝟐𝜿

|𝟐−𝝓−√𝝓𝟐−𝟒𝝓|
      (4) 

 

Where 

 

𝝓 = 𝝓𝟏 + 𝝓𝟐, 

𝝓𝟏 = 𝒄𝟏𝒓𝟏, 

𝝓𝟐 = 𝒄𝟐𝒓𝟐, 

𝝓 ≥ 𝟒  𝒂𝒏𝒅   𝜿 ∈ [𝟎, 𝟏] 

Thus  

 

𝒘 = 𝝌, 𝒄𝟏 = 𝝌𝝓𝟏, 𝒄𝟐 = 𝝌𝝓𝟐 

 

Eq. 2 can be used with these parameters stated above. PSO’s 

Pseudocode as follows; 

 
Step 1 
Initialization 
Do 

Set n, LB, UB, 𝐼𝑡𝑒𝑟𝑚𝑎𝑥, 𝜙1 , 𝜙2, 𝜅  and 𝜒 
Generate population(PS) 
Assign each particle random positions 
for i = 1 to population size 

    if fitness(𝑋𝑖
⃗⃗  ⃗)<fitness(𝑃𝑖

⃗⃗ ) 

        𝑃𝑖
⃗⃗ =𝑋𝑖

⃗⃗  ⃗ 

        g=min(𝑃𝑖
⃗⃗ ) 

    end 
Next i 
Until termination criterion is met 

 

Step 2 
Do 
for i=1 to 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 
    for j = 1 to to PS 

        𝑉𝑖𝑗(𝑡 + 1) = 𝑤𝑉𝑖𝑗(𝑡) + 𝑐1𝑟1𝑗(𝑡)(𝑃𝑖𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)) +

𝑐2𝑟2𝑗(𝑡)(𝑔𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)) 

        𝑋𝑖𝑗(𝑡 + 1) = 𝑋𝑖𝑗(𝑡) + 𝑉𝑖𝑗(𝑡 + 1) 

              if fitness(𝑋𝑖𝑗
⃗⃗⃗⃗  ⃗)<fitness(𝑃𝑖𝑗

⃗⃗⃗⃗ ) 

                  𝑃𝑖
⃗⃗ =𝑋𝑖

⃗⃗  ⃗ 

                  𝒈𝒋=min((𝑃𝑖𝑗
⃗⃗⃗⃗ ) 

              end 
    Next j 
Next i 

Until termination criterion is met 

3. Benchmark Function Optimization Problems 

In this section, the author compare the presented PSO with 

benchmark problems which have already been studied by 

numerous researchers. The algorithm coded in Matlab and is run 

Intel Core i7, 2.7 GHz with 16.00 GB Ram in macOS Sierra 

operating system. All figures in this paper were generated by using 

Matlab. The results are compared to those obtained from previous 

studies, which include ARSET[7], ACO[5], HRO[6], RSW[8], 

discrete filled function[3] and DRASET[4] algorithms. For the 

detail of the compared techniques, the readers can refer [3-8]. 

Except PSO, all comparative results for the benchmark problems 

are derived from CURA’s previous work[8]. Throughout the 

iterations, performance of PSO for first 3 problems are shown in 

figures. Also third and sixth problem objective functions are shown 

in figures within the range [-10, 10]. 

3.1. Benchmark Problem 1 

This function has one variable and two minima. The local 

minimum is at x=0, furthermore function’s global minimum is at 

x=3. 

 

𝒇(𝒙) = {
𝒙𝟐,                  if    𝒙 ≤ 𝟏,

(𝒙 − 𝟑)𝟐 − 𝟑, if    𝒙 > 𝟏.
    (5) 

 

Differ from the RSW and PSO, the initial point were set to 0.5 for 

other three techniques. RSW were set the initial points 23.9342 and 

14.0356. For this problem PSO’s 𝑳𝑩 and 𝑼𝑩 were set to -50 and 

50. All results compared for the benchmark problem 1 are shown 

in table 1. 

 

Table 1: Results for the Problem 1 

Algorithms x f(x) Epoch Number 

HRO 3.000324 -2.9999998 1,000 

ARSET 3 -3 1,000 

ACO 3 -3 500 

RSW(𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 23.9342) 2.999581 -2.9999998 500 

RSW(𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 14.0356) 3 -3 1,000 

PSO 3 -3 50 

 

For instance PSO’s performance for Problem 1 throughout the 

iterations is shown in figure 1. 

 

Figure 1: Performance of PSO for Problem 1 

 

3.2. Benchmark Problem 2 

Second function has one variable and its minimum at x=0.  

 

𝒇(𝒙) = {[𝒙 ∗ 𝒔𝒊𝒏 (
𝟏

𝒙
)]

𝟒
+ [𝒙 ∗ 𝒄𝒐𝒔 (

𝟏

𝒙
)]

𝟒
,       if    𝒙 ≠ 𝟎,

𝟎,                                                        oterwise.
  (6) 
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ARSET and ACO were set the initial point to 1. All four techniques 

have three different epoch number results. RSW were set the initial 

points 40.1959, 45.287 and 29.9729. Also PSO was run for 1000, 

3000, 5000 epoch numbers. The results are given in table 2.  

 

Table 2: Results for the Problem 2 

Algorithms x f(x) Epoch Number 

ARSET 1.90E-06 6.58E-024 10,000 

ACO 3.36E-10 8.16E-039 10,000 

RSW(𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 40.1959) -2.55E-74 1.47E-295 10,000 

PSO 1.10E-53 1.11E-212 1,000 

    

ARSET 4.39E-08 1.85E-30 30,000 

ACO -1.57E-11 5.47E-44 30,000 

RSW(𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 45.287) 8.17E-82 0 30,000 

PSO -5.34E-82 0 3,000 

    

ARSET -2.53E-11 2.21E-43 50,000 

ACO 7.79E-12 1.40E-45 50,000 

RSW(𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 29.9729) -1.34E-81 0 50,000 

PSO 3.91E-102 0 5,000 

 

Also PSO’s performance for problem 2 shown in figure 2. It is 

obvious that although selected epoch number 5,000, PSO achieved 

its best solution throughout the iteration number approximately 

1700. 

 

Figure 2: PSO's performance for 5,000 epoch number 

 

3.3. Benchmark Problem 3 

Problem 3 is 8th degree polynomial and has two variables, shown 

in eq. 7. The minimum point of this function x=3, y=3 and f(x, 

y)=0. 

 

𝒇(𝒙, 𝒚) =
(𝒙−𝟑)𝟖

𝟏+(𝒙−𝟑)𝟖
+

(𝒚−𝟑)𝟒

𝟏+(𝒚−𝟑)𝟒
    (7) 

 

It is stated that ARSET, ACO and RSW were run for E=10,000, 

30,000 and 50,000. ARSET and ACO both took the initial point 

{0,0} and RSW was run for three different initial point for x and y 

i.e. ( 𝑥 initial = 11.8192
𝑦 initial = −27.2218

), (
𝑥 initial = 43.0038

𝑦 initial = −41.6007
) and (

𝑥 initial = 25.5261
𝑦 initial = −25.8986

). 

A visual for the objective function of benchmark problem 3 can be 

seen in figure 3. 

 

Figure 3: Visual for the Objective Function of Benchmark Problem 3 

 

PSO was run for 1,000, 3,000 and 5,000 epoch numbers. The 

results are given in table 3. Also PSO’s performance for problem 

3 is shown in figure 4. It is obvious that although epoch number 

were selected for 5,000, PSO achieved its best solution throughout 

the iteration number approximately 450. 

 

 

Figure 4: performance of PSO for problem 3 

 

Table 3: Results for the Problem 3 

Algorithms x y f(x, y) Epoch Number 

ARSET 3.0157 2.9999 3.71E-15 10,000 

ACO 3x2066E-09 3x2384E-09 2.62E-21 10,000 

RSW(
𝑥 initial = 11.8192

𝑦 initial = −27.2218
) 2.9991 2.9999 4.17E-25 10,000 

PSO 2.9993 2.9999 3.64E-26 1,000 

     

ARSET 3.0072 3 7.32E-18 30,000 

ACO 3 3 0 30,000 

RSW(
𝑥 initial = 43.0038

𝑦 initial = −41.6007
) 3.0005 3 6.73E-27 30,000 

PSO 3,0000 3 1.08E-84 3,000 

     

ARSET 3.0015 3 5.04E-23 50,000 

ACO 3 3 0 50,000 

RSW(
𝑥 initial = 25.5261

𝑦 initial = −25.8986
) 2.9996 3 3.43E-28 50,000 

PSO 3 3 0 5,000 

 



This journal is © Advanced Technology & Science IJAMEC, 2017, 5(3), 47–52  |  50 

3.4. Benchmark Problem 4 

This benchmark problem is known as Rosenbrock’s Banana 

Function in the literature. ARSET, ACO and PSO searched for the 

minimum function value within the solution range [0, 6]. The 

minimum of the function is at x=1, y=1 and f(x, y)=0.  

 

𝒇(𝒙, 𝒚) = 𝟏𝟎𝟎(𝒙 − 𝒚𝟐)𝟐 + (𝟏 − 𝒙)𝟐    (8) 

 

It is stated that ARSET was run for the initial point for [-1.9, 2]. 

Also RSW (
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 24.7355
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 42.3291

), (
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 43.3763
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 23.2853

) and (𝑥
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 43.8923
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 46.455

). PSO 

initialized totally random points for this problem. 

 

Table 4: Results for the Problem 4 

Algorithms x y f(x, y) Epoch Number 

ARSET 0.99401 0.997 3.58E-05 10,000 

ACO 1.00021 1.00004 1.73E-06 10,000 

RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 24.7355
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 42.3291

) 0.99999 0.99999 2.27E-27 10,000 

PSO 1 1 0 1,000 

     

ARSET 1.0001 1.0001 2.03E-08 30,000 

ACO 1 1 5.68E-12 30,000 

RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 43.3763
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 23.2853

) 1 1 5.21E-28 30,000 

PSO 1 1 0 3,000 

     

ARSET 1 1 4.02E-16 50,000 

ACO 1 1 0 50,000 

RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 43.8923
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 46.455

) 1 1 1.97E-31 50,000 

PSO 1 1 0 5,000 

 

3.5. Benchmark Problem 5 

Problem 5 is a different form of problem 4 as seen in eq. (9). 

Youngjian and Yumei tested their algorithm on this function by 

using discrete filled function algorithm[3]. 

 

𝒇(𝒙) = ∑ 𝟏𝟎𝟎(𝒙𝒊+𝟏 − 𝒙𝒊
𝟐)

𝟐
+ (𝟏 − 𝒙𝒊)

𝟐𝑵−𝟏
𝒊=𝟏    (9) 

 

Youngjian and Yumei stated that they set the initial point for this 

problem [5, 5], [-5, -5], 𝑥 ∈ [−5 − 5] 𝑎𝑛𝑑 𝑦 ∈ [5  5] , 𝑥 ∈

[5 5] 𝑎𝑛𝑑 𝑦 ∈ [−5 −  5]. This problem solved with PSO in the range 

of [-5, 5]. Three different dimensional(N=10, 25 and 50) results for 

RSW and PSO can be seen in Table 5. 

 

Table 5: Results for the Problem 5 

N RSW PSO 

10 8,20E-04 1.14E-08 

25 4,84E-03 5.17E-06 

50 1,58E-02 1.78E-05 

 

3.6. Benchmark Problem 6 

Benchmark problem 6 is given in eq. (10) where the goal is to 

minimize for the range of [-10, 10]. ACO, ARSET took initial 

point x=9, y=9. RSW took three different initial point for x and y 

as RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 42.2649

𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = −31.5613
), RSW(

𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 49.8498
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 45.5905

) and 

RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = −0.0093
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 48.8558

). PSO started in totally random points between 

the range of [-50, 50]. 

 

𝒇(𝒙, 𝒚) =
𝒙

𝟏+|𝒚|
      (10) 

 

A visual can be seen in figure 5 for the objective function of 

benchmark problem 6. Also comperative results are given in the 

table 6. 

 

Figure 5: Visual for the Objective Function of Benchmark Problem 6 

Table 6: Results for the Problem 6 

Algorithms x y f(x, y) Epoch Number 

ARSET -9.9968 3.46E-009 -9.9968 10,000 

ACO -9.9989 2.01E-004 -9.9989 10,000 

RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 42.2649

𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = −31.5613
) -9.773 3.42E-17 -9.773 10,000 

PSO -9.999 -3.85E-17 -9.9999 1,000 

     

ARSET -9.9996 -2.08E-018 -9.9996 30,000 

ACO -9.9999 -6.05E-008 -9.9999 30,000 

RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 49.8498
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 45.5905

) -9.9016 6.52E-17 -9.9016 30,000 

PSO -10 -6.82E-17 -9.9999 3,0000 

     

ARSET -10 6.67E-008 -10 50,000 

ACO -10 8.07E-011 -10 50,000 

RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = −0.0093
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 48.8558

) -9.9996 -6.57E-17 -9.9996 50,000 

PSO -10 0 -10 5,000 

3.7. Benchmark Problems 7-21 

Table 8 covers the information for functions, dimensions, variable 

ranges and their theoretical bests of the benchmark problems. 

Although problem 18, same as the problem 4 its parameters are 

different. The proposed PSO algorithm’s results compared with the 

DRASET and RSW. Results can be seen in table 7. 

Table 7: Results for the Problems 7 - 21 

No Epoch # RSW DRASET PSO 

Theoretical 

Best 

7 2,501,000 0.00 0.00 0.00 0.00 

8 2,501,000 -16.09172 -16.09172 -16.09172 -16.09172 

9 2,502,000 0.998 0.998 0.998 0.998 

10 2,501,000 0.39788735 0.39788737 0.3978873 0.3978873 

11 2,502,000 -1.0316284 -1.0316284 -1.031628 -1.031628 

12 2,503,000 3.00 3.00 3.00 3.00 

13 2,502,500 -186.73091 -186.73091 -186.7309 -186.7309 

14 25,015,000 8.01275646286 8.01275646263 8.01276 8.01276 

15 25,050,000 1.28E-28 3.72E-12 3.37E-54 0.00 

16 25,050,000 0.00 2.45E-16 1.03E-43 0.00 

17 25,080,000 2.3558E-32 5.93E-12 1.86E-36 0.00 

18 2,501,500 2.8399E-29 3.9053E-15 4.32E-47 0.00 

19 2,506,000 1.0091 1.00 1.00 1.00 

20 250,200 1.74415200558 1.74415200796 1.74 1.74 

21 25,080,000 1.02E-11 8.17E-9 2.52E-23 0.00 
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Table 8: Benchmark Problems 7-21 

Problem No Function Dimension 

Variable 

Range Theoretical Best 

7 𝒇(𝒙,𝒚) = 𝒙𝟐 + 𝟐𝒚𝟐 − 𝟎. 𝟑 𝒄𝒐𝒔(𝟑𝝅𝒙) − 𝟎. 𝟒 𝒄𝒐𝒔(𝟒𝝅𝒚) + 𝟎. 𝟕  2 [-1,28  1,28] 0 

8 𝒇(𝒙,𝒚) = [𝒄𝒐𝒔(𝟐𝝅𝒙) + 𝒄𝒐𝒔(𝟐.𝟓𝝅𝒙) − 𝟐. 𝟏] ∗ [𝟐. 𝟏 − 𝒄𝒐𝒔(𝟑𝝅𝒚) − 𝒄𝒐𝒔(𝟑. 𝟓𝝅𝒚)]  2 [-1  1] -16.09172 

9 

𝒇(𝒙𝟏, 𝒙𝟐) = [𝟎, 𝟎𝟎𝟐 + ∑ (𝒋 + ∑ (𝒙𝒊 − 𝒂𝒊𝒋)
𝟔𝟐

𝒊=𝟏 )
−𝟏

𝟐𝟓
𝒋=𝟏 ]

−𝟏

  

 
𝒂 = |

−𝟑𝟐 − 𝟏𝟔 𝟎 𝟏𝟔 𝟑𝟐 − 𝟑𝟐 − 𝟏𝟔  𝟎  𝟏𝟔 𝟑𝟐 − 𝟑𝟐 − 𝟏𝟔 𝟎 𝟏𝟔 𝟑𝟐 − 𝟑𝟐 − 𝟏𝟔 𝟎 𝟏𝟔 𝟑𝟐 − 𝟑𝟐 − 𝟏𝟔 𝟎 𝟏𝟔 𝟑𝟐
−𝟑𝟐 − 𝟑𝟐 − 𝟑𝟐 − 𝟑𝟐 − 𝟑𝟐 − 𝟏𝟔 − 𝟏𝟔 − 𝟏𝟔 − 𝟏𝟔 − 𝟏𝟔  𝟎  𝟎  𝟎  𝟎  𝟎  𝟏𝟔 𝟏𝟔 𝟏𝟔 𝟏𝟔 𝟏𝟔 𝟑𝟐 𝟑𝟐 𝟑𝟐 𝟑𝟐 𝟑𝟐

|  

 

2 [-65,536 65,536] 0.998 

10 𝒇(𝒙,𝒚) = (𝒚 −
𝟓.𝟏

𝟒𝝅𝟐
𝒙𝟐 +

𝟓

𝝅
𝒙 − 𝟔)

𝟐

+ 𝟏𝟎(𝟏 −
𝟏

𝟖𝝅
) 𝒄𝒐𝒔(𝒙) + 𝟏𝟎  2 

𝑥 ∈ [−5  10] 
𝑦 ∈ [0  15] 

0.3978873 

11 𝒇(𝒙,𝒚) = (𝟒 − 𝟐. 𝟏𝒙𝟐 +
𝒙𝟒

𝟑
)𝒙𝟐 + 𝒙𝒚 + (𝟒𝒚𝟐 − 𝟒)𝒚𝟐  2 

𝑥 ∈ [−3  3] 
𝑦 ∈ [−2  2] 

-1.0316285 

12 
𝒇(𝒙,𝒚) = [𝟏 + (𝒙 + 𝒚 + 𝟏)𝟐(𝟏𝟗 − 𝟏𝟒𝒙 + 𝟑𝒙𝟐 − 𝟏𝟒𝒚 + 𝟔𝒙𝒚 + 𝟑𝒚𝟐)] ∗
[𝟑𝟎 + (𝟐𝒙 − 𝟑𝒚)𝟐(𝟏𝟖 − 𝟑𝟐𝒙 + 𝟏𝟐𝒙𝟐 + 𝟒𝟖𝒚 − 𝟑𝟔𝒙𝒚 + 𝟐𝟕𝒚𝟐)]  

2 [-5  5] 3 

13 𝒇(𝒙,𝒚) = [∑ 𝒊 𝒄𝒐𝒔((𝒊 + 𝟏)𝒙 + 𝒊)𝟓
𝒊=𝟏 ] ∗ [∑ 𝒊 𝒄𝒐𝒔((𝒊 + 𝟏)𝒚 + 𝒊)𝟓

𝒊=𝟏 ]  2 [-10  10] -186.73091 

14 

𝒇(𝒙,𝒚, 𝒛) = ∑ (𝒙(𝒂𝒊)
𝒚(𝒃𝒊)

𝒛 − 𝒄𝒊)
𝟓
𝒊=𝟏

𝟐
  

𝑎 = |5 3 0.6 0.1 3| 
𝑏 = |10 1 0.6 2 1.8| 
𝑐 = |2.122 9.429 23.57 74.25 6.286| 

3 [-∞ +∞] 8.01276 

15 
𝒇(𝒙) = 𝟏𝟎𝟎(𝒙𝟐 − 𝒙𝟏

𝟐)𝟐 + (𝟏 − 𝒙𝟏)
𝟐 + 𝟗𝟎(𝒙𝟒 − 𝒙𝟑

𝟐)𝟐 + (𝟏 − 𝒙𝟑)
𝟐 +

𝟏𝟎. 𝟏[(𝒙𝟐 − 𝟏)𝟐 + (𝒙𝟒 − 𝟏)𝟐] + 𝟏𝟗. 𝟖(𝒙𝟐 − 𝟏)(𝒙𝟒 − 𝟏)  
4 [-10  10] 0 

16 𝒇(𝒙) = ∑ [(𝒙𝒊
𝟐)

(𝒙𝒊
𝟐+𝟏)

+ (𝒙𝒊+𝟏
𝟐 )

(𝒙𝒊
𝟐+𝟏)

]𝟏𝟗
𝒊=𝟏   20 [-1  4] 0 

17 
𝒇(𝒙) = (𝝅/𝟐𝟎)[𝟏𝟎𝒔𝒊𝒏𝟐(𝝅𝒙𝟏) + ∑ ((𝒙𝒊 − 𝟏)𝟐(𝟏 + 𝟏𝟎𝒔𝒊𝒏𝟐(𝝅𝒙𝒊+𝟏))) +𝟏𝟗

𝒊=𝟏

(𝒙𝟐𝟎 − 𝟏)𝟐]  
20 [-10  10] 0 

18 𝒇(𝒙,𝒚) = 𝟏𝟎𝟎(𝒚 − 𝒙𝟐)𝟐 + (𝟏 − 𝒙)𝟐  2 [-10  10] 0 

19 𝒇(𝒙,𝒚) = 𝒆𝒙𝒑{
𝟏

𝟐
(𝒙𝟐 + 𝒚𝟐 − 𝟐𝟓)𝟐} + 𝒔𝒊𝒏𝟒(𝟒𝒙 − 𝟑𝒚) +

𝟏

𝟐
(𝟐𝒙 + 𝒚 − 𝟏𝟎)𝟐  2 [-5  5] 1 

20 𝒇(𝒙,𝒚) = [𝟏𝟐 + 𝒙𝟐 +
𝟏+𝒚𝟐

𝒙𝟐
+

𝒙𝟐𝒚𝟐+𝟏𝟎𝟎

(𝒙𝒚)𝟒
] ∗ 𝟎. 𝟏  2 [0  10] 1.74 

21 𝒇(𝒙) = (𝒙𝟏 + 𝟏𝟎𝒙𝟐)
𝟐 + 𝟓(𝒙𝟑 − 𝒙𝟒)

𝟐 + (𝒙𝟐 − 𝟐𝒙𝟑)
𝟒 + 𝟏𝟎(𝒙𝟏 − 𝒙𝟒)

𝟒  4 [-5  5] 0 
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4. Conclusion 

In this paper PSO’s performance and robustness are shown. For 21 

benchmark problems PSO’s results are quite competitive. PSO 

converges the theoretical best results with lesser epoch number for 

first four problems and problem 6. In this work when table 8 

examined, 2 problems were one dimensional, 13 problems were 

two dimensional, 1 problem was three dimensional, two problems 

were 4 dimensional and finally 2 problems were twenty 

dimensional. Problem 5 were run for 10, 25 and 50 dimensional. 

Due to problem 5, 16 and 17’s dimension toughness(N=10, 20, 25 

and 50), PSO was run for with 100 and 200 particles and its 

solutions are yet close to the global minimum for these dimensions. 

14th problem’s solution space is within the range [-∞ +∞]. The 

proposed PSO started within the range of [-inf  inf]. For first four 

problems and problem 6, PSO achieved best known results. For 

problems 7-14, 19 and 20, PSO achieved theoretical bests. For 

those 15-18 and 21 problems PSO obtained worse solution yet its 

results are relatively close to the global minimums. Algorithms for 

function optimization are widely studied by the researchers. Each 

algorithm has their ups and downs when subject to their results and 

performance.  
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