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Abstract: Sequential moving of particles in one direction is considered. Model of totally-connected flow is introduced in [1] - [4] and 
concerned to the type of follow-the-leader in traffic flow theory. 
Properties of traffic flow are significantly determinate by state-function. For describing of non-connected flow we introduce new model 
when acceleration of particles takes into consideration the dynamics of neighborhoods particles. For a chain of particles, the model is 
describing by differential equations of second degree. The function of communication for this model is defined. In partial case the 
sufficient conditions for convergence of solution the model to totally-connected state are obtained. 
In the case of leader-follower pair of particles with linear state and communication functions the statements of belonging of solutions to 
some Sobolev classes of functions are proved. 
 

1. Introduction 

One of the basic models of traffic flow is a  model  of follow the 
leader [1]-[4]. This model reduces to study of next differential 
equations: 

xn+1− xn = f (ẋ n),               (1) 

where xn(t) is a vehicle coordinate, f (ẋ n) is a distance from a 
rear bumper of driven car to a rear bumper of leader car 
such that provided the possibility of emergency braking for 
driven car. The distance is called dynamical dimension. The 
coordinates of the chain particles are satisfying to 

xn(t) < xn+1(t), n = 1, 2, …                 (2) 

Flow satisfying (1) -(2) is called totally connected. 
In classic case the function f in (1) is a parabola with 
positive coefficients, [1], 

f (x) = a + bx + cx2,                   (3) 

where a is static distance, a > 0, b is driver reaction delay, 
b > 0, and c is braking distance coefficient, c > 0. 

At  considered   interval  x  ≥   0 the function  f  is continuous 

with p several successive derivatives, positive, monotone and 

convex. 

Let us denote the inverse of this function f by g and we 
obtain a system of differential equations 

ẋ n  = g(xn+1 − xn), n = 1, ..., N − 1.  (4) 

The function g is called a state function.  

2. Problem statement 

We consider the system of differential equations 

ẍn = h(ẋ n − g(xn+1 − xn)) + 

+ g’ (xn+1 − xn)(ẋ n+1 − ẋ n), n = 1, 2, .., N − 1,    (5) 

where the state function g increases strict monotonically, 

supp g ∈  [1, ∞), g(1) = 0, 

and g is a smooth function 

g’’(x) ≤ 0,   x ≥ 1.                                     (6) 

h : R+ → R, 

h is strict monotonically decreasing smooth function such that 
h(0) = 0. We call the function h as communication function.   
The equation (5) describes the case of non connected flows, 
when the equalities in equation (4) are not hold. The system of 
equations (4) is defined by the dependence between velocity and 
distance between neighboring particles, it is a model of dynamic 
dimensions, [1]. If equalities (4) do not hold, i.e. current 
distance between neighboring particles more or less than safety 
distance, then there appeares a force, acceleration, returning the 
flow characteristics to totally-connected state (4). 
We suppose that following initial conditions 

 ቐ

 

ଵݔ
(0), … , ேିଵݔ

(0)

,ሶଵ(0)ݔ … , ሶݔ ேିଵ
(0)

                                      (7) 

and boundary condition  

xN (t) = r (t)                          (8) 

are given. 

Function r (t) is called leader moving law. 
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∞

We suppose ∀ t ≥ 0 the derivative ṙ is absolute continuous 

function 

0 < ṙ (t) ≤ M1                               (9) 

and almost everywhere the inequalities 

−M2  ≤  r̈  (t)  ≤ M2                          (10) 

hold. 

Conditions (9) - (10) are equivalent to the statement, 

that the function R(t) = ṙ (t) –M1/2 belongs to Sobolev class 

of functions R ∈ ஶܹ
ଵ (R+), 

ஶ(ܴା)ܮ‖ܴ‖ ≤ ଵܯ 
2ൗ ,               (11) 

ฮ ሶܴ  ฮܮஶ(ܴା) ≤  ଶ                         (12)ܯ

We study the quality properties of cluster {ݔ௡}௡ୀଵ
ேିଵ, where 

x1 < x2 < x3 < ... < xN−1 < xN = r(t),        (13) 

and xN (t) is the leader. 
The physical sense of the problem gives the following 
conditions to particles velocities 

ẋ n(t) > 0, 1 ≤ n ≤ N, ∀ t.                  (14) 

3. General properties of system (5) - (12) 

The equation (5) can be transformed to the following 

ቐ
= ݕ –ሶ௡ݔ   (௡ݔ – ௡ାଵݔ)݃ 

ሶݕ  =  ℎ(ݕ)
                                       (15) 

We denote by h(y) the solution of t h e  fo l l o wi n g  C a u c h y  

problem 

ቐ
ሶݕ  =  ℎ(ݕ)

(0)ݕ  = ሶݔ  ௡(0)  − ሶݔ)݃  ௡ାଵ(0)  − ሶݔ  ௡(0))  = ଴௡ݕ 

 (16) 

Lemma 1.  Function |y| monotonically decreases. 

Proof. As yẏ < 0, then (y2)’ = 2yẏ < 0. Therefore, y2 

monotonically decreases, hence |y| monotonically decreases.  

Suppose 

h(y) = −yα = −|y|αsgn(y).                  (17) 

Then equation (15) has the solution 

y=ቐ
= ߙ                                         ,଴௡ ݁ି௧ ݕ  1

(1 − షభ(ଵିఈ)(ߙ
ܥ) − షభ(ଵିఈ)(ݐ

ߙ    , ≠ 1.
         (18) 

The constant C is defined from boundary condition (15).  

If 0 < α < 1 then it is true that y(t) = 0 for t > C. 

The following theorem is true. 
Theorem 1. If communication function h is type (17),  

0 < α < 1, then any finite cluster transforms to totally 

connected s t a t e  for finite time. 

Proof. Since 

y(t) = ẋ n(t) − g(xn+1 − xn),                   (19) 

it is necessary to obtain that xn(t) > 0, t ∈ R+. Really, if 

y(0) > 0, then y(t) > 0 ∀t ≥ 0. Hence ẋ n(t) − g(xn+1 − xn) < 0 

∀t. As well as g is positive, then ẋ n(t) > 0. 

If y(0) < 0, then y(t) < 0 ∀t. So ẏ(t) > 0 ∀t. Hence 

ẏ (t) = ẍn(t) – g’ ( xn+1(t) − xn(t))(ẋ n+1(t) − ẋ n(t)) > 0. 

If at some point ẋ (T ) = 0, then 

ẍn(T )  -  g  ’(xn+1(T) -  xn(T ))ẋn+1(T ) > 0, 

from this ẍn(T ) > 0. 

Consequently  at  any time T  the  velocity ẋ n(t)  does’t 

 change a sign. The theorem is proved. 

Theorem 2. If communication function h is type (17), 0 < α ≤ 1,   

∀ n, 1 ≤ n < N,  there exist such constants Mn1, Mn2 > 0 

that 

0 < ẋ n(t) ≤ Mn1,                            (20) 

and almost everywhere 

−Mn2 ≤ ẍn(t) ≤ Mn2.                      (21) 

Proof. 

The equation (19) considered transformed to the following 

form:  

y(t) − ẋ n+1(t) = ẋ n(t) − ẋ n+1(t) + g (xn+1 − xn). 

     Denote by 

u(x) = (xn+1 − xn) , F = −g, G = −y(t) + ẋ n+1(t) 

we obtain 

ሶݑ     (x) + F (u) = G(x).                          (22) 

1) At first we suppose that α = 1 in (17). Then we can 

assume that F (u) = u. Using the method of variation of 

parameters for equation  (22) we consider the solution in the 

following form 

u(x) = C(x)e
−x

. 

Therefore we have C        (x)e
−x 

= G(x), 

C(x) = u(0) +׬ ݁(ݐ)ܩ
ݐ

ݐ݀
௫

଴  

u(x) = C(x)e
−x 

= u(0)e
−x 

+ G(x)e
−x

.   (23) 

If G is a bounded function, then 

 

஼(ோశ)‖ݑ‖ ≤ ஼(ோశ)‖ܩ‖  × ‖݁ି௫‖௅భ(ோశ).  

2) We  suppose 
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                         F (u) = u
α

, 0 < α < 1. 

We assume that |G| ≤ MG. From the equation (22) 

it follows that if |y| > M G
a-1

, then sgn(u̇ )= −sgn(F 

(u)), and hence the function |u| increases. Thus, 

|ݑ| ≤ ீܯ
௔ିଵ.                                              (24) 

From (22) we have, that 

|u̇ | ≤ 2MG.                                           (25) 

The necessary estimates follow from (24), (25) and 

definitions. 

4. Case of leader – follower with linear functions of 

state and communication 

Suppose N=1, x1 = x, 

ẍ = h(ẋ − g(r(t) − x)).                         (26) 

We suppose that h is a linear function, 

h(x) = −kx, k > 0,           (27) 

and  f  is a linear function 

g(x) = l(x − 1), l > 0.                (28) 

Then 

ẍ = −kẋ + kl(r(t) − x − 1), 

i.e. 

ẍ + kẋ + klx = kl(r(t) − 1).                    (29) 

Characteristic equation (26) 

α2 + kα + kl = 0 

has either two negative real roots, or adjoint complex roots with 
negative real part. If k = 4l then there is multiply real roots.  
We suppose that r(t) is a linear function 

r(t) = 1 + At + B.                           (30) 

Then the equation (26) has a solution 

x*(t) = Ct + D, 

where kC + klCt + klD = Aklt + Bkl, i.e. 

A = C, D = B − A/l.                       (31) 

Thus, if  x(t) is arbitrary solution of (26) with r(t) = 

1+At+B, 

Then function y(t) = x(t)−x* (t) satisfies the homogeneous 

equation such that 

ÿ + kẏ + kly = 0, 

all  solutions  converge  exponentially  to  zero.  Therefore at in 

case (30) every solution of  (26)  converges to functions   

x* = At + (B − A/l). 

 Obviously, from some t > t* any solution x shall 

monotonically increase. Denote by x* the solution of (29) 

with zero initial conditions. If the parameter A is equal to M1/2, 

then, we obtain  

ሷݕ  + kẏ + kly = kl(r(t) − 1) -  
ெభ

ଶ
 t – B,                       (32) 

where right part belongs to ܤஶ
ଵ ቀ

ெభ

ଶ
ቁ ∩ ஶܤ

ଵ  (ଶܯ)

Consequently,  the  problem  is  the  following:  whether  the 

solution of (32) belongs to the same class of function as the 

right part of this equation? 

If we differentiate the equation (32) and denote z = ẏ , then we 

obtain the follow 

z̈ + kż + klz = h(t), 

where h ∈  ஶܹ
ଵ(ܴା), i.e. h is bounded function on semi-line with 

its derivative. Does the solution belong to this class? From 

condition h ∈  ஶܹ
ଵ(ܴା) it follows หℎ෠ห ≤  

஼బ

௣
+  

஼భ

௣మ, where ĥ  is 

Laplace transform. Hence, 

           ẑ =
௛

   
௣ଶ 

ା ௞௣ା௞௟
    +  ෝ0                       (33)ݖ

and it follows that z ∈  ஶܹ
ଵ(ܴା). 

We define the problem on exact estimations: 

z̈ + kż + klz = h(t), h ∈  ஶܹ
ଵ(ܴା),               (34) 

||ż||L∞ (R+) → max,                  (35) 

or 

||z||L∞ (R+) → max.                          (36) 

If   we   denote P (z) = z̈+kż +klz, then  (34) - (36)  transforms 

to 

||P(z)||L∞ (R+)  ≤ 1,                           (37) 

||Ṗ (z)||L∞ (R+) ≤ 1,                  (38) 

||Q(z)||L∞ (R+) → max,           (39) 

where Q(z) = z or Q(z) = ż . 
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Figure 1.   Distance-velocity data and function (1), (3) 

Problems of such type belong to inequalities Kolmogorov kind 
for norms of differential operators, [5], and they have very 
meaningful history. 

5. Real-time experiment using SSSR-Traffic 

infocommunication system 

We have developed infocommunicational system SSSR - Traffic 
for receiving and processing o f  GPS-data in real-time 
mode, [6]-[9]. The leading car (leader) and the following car 
(follower) with smartphone client applications onboard drove 
one following the other. SSSR-Traffic system checked their 
characteristics. In Fig.1 it is shown experimental data using SSSR-
Traffic system and plot of function f (࢞ሶ ), (1), (3). The experimental 
data and model have close results. 

6. Conclusion and acknowledgments 

Quality properties of chain behavior, described by dynamical 
system with functions of state and communication, are studied. 
The experimental research was provided with good results. 
This work was supported by the Russian Foundation for 
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