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Abstract: Solution of linear algebra systems may come out with “ill-condition” or “well-condition” based on input information and 

solution methods. The aim of this study is to determine and correction of problems that may come out from the solution of matrix 

equations by computers and to calculate .A x f linear algebra. 
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1. Introduction 

If we solve .A x f equation system computer, we have to 

know about numbers subset in the numbering system that called 

“FORMAT”. 

It is  
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The boundaries  ,     chance for any computer 

depending on the coprocessor in the computer. 

In general as a rule there are two computer constants that 

characterize the approach. We show these constants by 
1
 and 

0 symbols. 1 is used for approaching to "1" , 0 is 

approaching to "0"  in computer. Practically there is no number 

in the ranges (0, )
0
 and (1,1 )

1
 in computer. 

 

A. Error in Placing The Real Number into Format 

 

Let’s take real numbers set of R and set F define an operator  

: [ , ]fl R F       
on these two sets, so that is places real number into format. If 

z F  then ( )fl z z . Otherwise we can’t determine any 

number into format that shows z , if z    or z     that is 

fl  operator is shown in different form in the computer. But all of 

operator have some common points. 

We have to point out that there will be “overflow error” when we 

put numbers beyond the interval [ , ] R     . So we don’t 

define fl  value for these numbers. But computer user has to take 

some precaution to avoid these problems. 

Now let’s give the upper boundary of the error that come out 

when we place number z  into the format. It is clear that the 

value of error after fl operation is: 

( )z fl z z     

Here
1

  ,
0

  , and . 0   . The value ( )z fl z  

after fl operation is called Round off error. ( )fl z  can be written 

( )z fl z z    . 

When we place number z  into the computer we see three causes. 

1. If z is the element of format, it will be place into the memory 

without any error. 

2. If instead of z , we place ( )fl z , it will be placed into the 

memory as the closest number to the z  value. Then  

( )
0

z fl z    

or 

( )
1

z fl z z 
 

error come out the total error will be shown as 

( )
1 0

z fl z z   
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If z  is out of chosen format then computer will show overflow 

error and will stop the operation. 

Similarly, A  is a real matrix in the NxN type and is real vector 

of 1Nx type. If there will be no error in the placing to the 

computer, providing A  and f  big enough  

( )
0

A  and )
0

f   

( )
1

A fl A A   

( )
1

f fl f f 
 

condition provide. This is called Input error. Here is the spectral 

norm of matrix A  , and is the Euclid norm of vector f . This 

means, 

2

1

N
f fi

i
 


 ; max

1
A Ax

x



 

B. Error That may Come Out When We Solve .A x f

Equation in The Computer 

Now, let’s see the main problem. What can we do to calculate 

linear equation with two diagonals in computer? Let’s take the 

following system: 
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Here ai , bi  and fi are given real number, xi is the element of 

desired vector ( 1, 2,...,  ,     2,3,..., )i N j N  . 
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This is necessary and if we apply this as an example in the 

computer. 
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Here, all diagonal elements are equal to 1; i.e., according to 

previous rule, solution of the problem is present and unique. 

2   ,    1, 2, ...,  
N j

x j Nj


 
 

But, this is a risky solution for computer side. Because, set of 

numbers in computer is restricted and there no any number bigger 

than  . 

So, for any , on condition of 2
N j




  , there is a number

( )N N   . If, N is selected like this way, we meet to an 

overflow error when we solve given problem at computer. 

In classical mathematics education, the well-known Cramer rule 

is used for solving .A x f equation, it is based on det A . We 

saw before that is unsuccessful. In addition, let us give another 

example that is shown det A  is unsuccessful.  

Let we take following equations system: 

1/ 2 1
1

1/ 2 1
2

...............

1 / 2 1

x

x

xN






 

In this example, because of 1/ 2a j 
, 1, 2,..., ,j N the 

solution is present and unique. The co-efficient matrix of this 

system is diagonal matrix. It is clear that, let’s take this: 

det 1/ 2
N

A   

Therefore, for any  on condition of 
1

2
N




   , there is a 

number ( )N N   .That is, the computer assume that 1/ 2
N

 

is zero. According to that, det A  became zero, det 0A  . 

Thus, the absence of a well-condition problem’s solution is given 

as a result. 

We can say that at problem solving with computers some 

methods given in classical mathematics, like Cramer rule, cause 

to obtain unsuccessful results. 

 

2. Examination The Problem with ( )A  Condition 
Number 

In computer-aided mathematical education, if it was started to 

solve a problem by using some methods that no having robust 

basics, it is clear that we will have important problems. This has 

been appearing in the last 50 years. Some studies have been done 

about this subject by Neuman [4] and Turing [3]. After that, for 

example, studies given by [1] [2] and for the defined problem at 

above the condition number is 

specified 
1

( )A A A


 and all problems have dealed with 

this ( )A . 

The condition number has two important attributes. We will see 

these at following theorems. 

Theorem 1: if ( )A   and 2 ( ) / 1A B A   then, in this 

case  

( )A B      and  
2

( ) ( ) 3 ( ) /A A B A B A      

Theorem 2: ( )A   and 2 ( ) / 1A B A   , in this case 

the nearness of and nearest of Ax f  end nearest 

( )A B y f g   solutions is given by following inequality: 

/ 3 ( )( / )x y x A B A g f     

The proof of these theorems could be found at [1]. 

It is clear that if the ( )A is given bigger, the solution of 

Ax f  is effected more from changing A and  f . That is, if 

smaller, the problem is well-condition. 

In applications, the correctness of data specifies two different 

ways. 1. Approximation and reading errors. 2. Representation and 

truncation errors for data stored in computer memory. Therefore 

naturally instead of Ax f equation, we accept the 

( )A B y f g   equation the “neighborhood” to it. We know 
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that only /B A eps  and /g f eps . Here, the eps 

parameter specifies that input data accuracy. So, the eps 

parameter is very important. If errors are only representation 

errors, in this case eps= 1 . 

If we solve the Ax f  problem, we don’t need the more 

accreted system in practice. Because, we can’t explain about the 

computed solution is near the real solution. In this situation, the 

solution is to use a parameter that accepted the upper limit of 

practical invertible matrices [5,6]. By using this parameter, we 

can express the Theorem 1 in other way. 

Theorem 3: If ( ) *A   and 2 * / 1B A   then  

( ) 1.5 *A B    and 

2
( ) ( ) ( ) /A A B A B A      

This theorem is related how much correct the value of *  and 

input values given.  According to this theorem, 

* /(2 )A B   must be held. 

If 20 ( ) 1
1

A    is held, for the problem .A x f , we can 

find an exact solution in the computer like 1
x y x 

Thus, it can be defined by computer as * 1/(20 )
1

  naturally. 

It is important to know that what kind of problem we are given, 

namely whether it is a good one or bad one. There are many 

different criterions depending on the type of the problem. For 

example, the problem of .A x f , well-known in mathematics, 

has always a solution for nonzero f . 
As long as det 0A 

holds. The solution exists and it is unique. If det 0A   does not 

hold, there are still some approaches to solve the problem. 

However, the solution either non-exists or it is not unique. That 

means this specific problem is bad for us. 

.A x f     ,     det 0A   

For the problem above, there exists a solution and its unique 

independently from f  (for each f ). This is a well-defined 

problem. But, as soon as the elements of A  are changed, the 

state of the problem also changes. In other words, it may not be a 

well defined problem anymore. For instance, for 

0

0 1
A



 
 
 

 

det 0A   and for each of f , there exists as solution and it 

is unique. On the other hand, 

0

0 0
B



 
 
 

 

For B above, the problem ( )A B y f  have infinite solution 

for some f  while some have no solution since det( ) 0A B  . 

The existence and uniqueness of the solution depend on the 

elements of f . 

In such problems, it can be thought that, how far or how near the 

problem is to the bad-defined region. How much we can change 

the elements of A , so it is still in a well-defined region. 

For the problem ( )A B y f  , if .A x f is in a well 

conditioned region, as long as ( / ) (1/10 ( ))B A A holds 

for a small normed B , the problem ( )A B y f  is also in a 

well defined region. Here, 
1

( ) 1A A A


  is condition 

number for the equation .A x f . Hence, for 

0

0 1
A



 
 
 

 

while .A x f is well-defined, in order to be ( )A B y f 

well defined, since ( ) 1/A  . 1A  , for 

/10B B   must hold. In other words for all Bs , which 

hold the inequality /10( )B A B  is well defined. 

Such problems whose solutions exist, are unique and stable in 

terms of their elements are called well-conditioned (correct). 

The set of matrices can be divided into two parts which are the 

subset of well- conditioned ones and the subset of ill-conditioned 

ones by the condition number ( )A , we can illustrate this 

situation by a Fig.1: 

Inversible matrixs of

Clusters

 

µ(A)<∞ µ(A)=∞ 

Non-Inversible matrixs of

Clusters

 
Figure 1 

 

If ( )A   holds then the problem .A x f is a well-

conditioned problem. It is possible to say that the distance of a 

matrix A  to the region of ill-conditioned matrices is

1/[10 ( )]A . Lets it by Fig.2: 

Inversible matrixs of

Clusters

 

µ(A)<∞ µ(A)=∞ 

Non-Inversible matrixs of

Clusters

1/(10µ(A))

Figure 2 

 
There are many studies concerning with the distance of a matrix 

to the region for well-conditioned matrices. 

In most of these studies indefiniteness principle arises. Namely, 

when we get a matrix A from the set

 , ,       is the given matrix,   ( )  A A D D D    

if ( ) 1D    holds, we can not still say that whether matrix A  

is in the set of well-conditioned ones or not. Although matrix D  

is in the set of well-conditioned, it is too close the set of ill-

conditioned ones. It can be illustrated by a Fig 3. 

 

µ(A)<∞ 

µ(A)=∞ 

 
Figure 3 

It should be defined that practical well-conditioned matrices so 

that we can obtain the distance of a matrix to the set of the ill-

conditioned matrices. 
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As long as we are given a number * which holds

1
( ) *A A A 


    , we can say that the problem 

.A x f is a well-conditioned problem practically. Otherwise it 

is a ill-conditioned one. Here the number *  is a boundary 

between practically well- conditioned problems and practically 

ill-conditioned problems. We can illustrate this situation by a 

Fig.4. 

Inversible matrixs of

Clusters

 

µ(A)<∞ µ(A)=∞ 

Non-Inversible matrixs of

Clusters

 
Figure 4 

3. Conclution 

So, the most important advantage of this approach is to warn the 

users about the problem (system) whether it is a well-conditioned 

or ill-conditioned problem by computing the exact value of

( )A by given formula; then if necessary, they change the data 

and input values which make the problem ill-conditioned or 

improve the approach partially or fully so that they have a chance 

to prevent themselves from wasting their time and work. 
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