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Abstract: The colony of a celestial universe has become foremost task for many countries in the late decades. The spinning attitude 

control for economical satellite operation is widely used. This paper shows a successful implementation of state space technique to 

inherently unstable satellite spun around longitudinal axis. Full-state feedback and reference input with full-state feedback are compared 

for deadbeat response. The state space control gains are tuned to satisfy controllability conditions. Observability conditions are checked 

for better tracking of attitude spinning angle to step input with the aim to achieve a robust spin stabilization of the satellite manoeuvre. 

Satisfactory deadbeat specifications are obtained based on reference input with full-state feedback. However, full-state feedback 

implements reasonable design gains and it appears to be slower in judgment with reference input with full-state feedback gains. The 

simulation and analytical results are well agreed based on dominant second-order poles. 

Keywords: Spinning Satellite Stabilization, Deadbeat Control, State Space, Pole Placement Method, FSF and RIFSF controllers. 

 

Nomenclatures 
 

zyx T,T,T                        Torques around x, y and z axes [N m]. 

zyx I,I,I                        Mass moment of intertie around x, y and z  

                                         axes [Kg m2]. 

 21 KKK               Full state feedback vector              

zyx ,,                       Angular accelerations Around x, y and z  

                                         axes [rad/sec2]. 

N                        Overall reference input gain                        

n                              Undamped frequency [rad/sec]. 

Nu                             Explicit reference input gain                      

zyx ,,                      Angular velocities around x, y and z axes  

                                        [rad/sec].  

                                           

 21 xxx NNN       Reference input gains  corresponds with 

                                        full state  feedback vector                                    

 

1. Introduction  
 The adventure into space is usually undertaken for scientific 

missions, communications, surveillances and reconnaissance. 

The pioneering space explorations are made by the soviet union 

and united states at the late of 1950s [1]. By the end of past 

century it has seen partnerships many countries such as Japan 

and Europe to invade the space. Lastly, Chine and India ride 

the race into space due to the availability of various resources. 

Spinning attitude control is one of strategies for long life 

mission for more than 40 years. Propulsion system thrusters are 

fired only occasionally to make desired changes in the spin-

stabilized attitude. At the present time, most of the satellite 

attitude controls in practical world are based on a proportional-

integral-derivative (Pid) controller algorithm [2]. The state 

space (SS) method is a simple  technique to describe satellite 

 

 

spun around longitudinal axis. The SS method has been in a use 

 for over 100 years and is introduced to control designs in the 

ate 1950s by R. E. Kalman [3].  

 Beginning in the late 1950s and early 1960s Kalman 

introduced the ideas of state-variables, controllability and 

observability. Zadeh and Desoer had a significant impact in 

promoting the state-space method. During the 1980s reliable 

numerical methods were developed for dealing with state-

variable designs and computer-aided software for control 

design [4]. Since the invention of Matlab by Cleve Miler huge 

applications for control design were made. The state-variable 

methods were gaining momentum particularly in the US. 

Research groups in England led by Rosenbrock, MacFarlane, 

and Munro extended to multi-input multi-output systems. In the 

end of the 1980s the frequency domain method is used in 

connection with state-variable method as powerful approach 

[5]. The state-variable methods were found more 

computationally advantageous than the frequency domain 

method [6].  

 This paper is devoted to implement SS controller algorithms to 

unstable spinning satellite. The performance of Reference Input 

with Full State Feedback (RIFSF) and Full State Feedback 

(FSF) controller are examined for deadbeat specifications. A 

Matlab framework of M-file batch and Simulink is used to 

model, simulate and control spinning satellite. 

2. Mathematical model   

 The brief demonstrations of satellite problem descriptions, 

control algorithms and implementations will be described 

below. Figure.1 illustrates the diagram of a spinning satellite 

with SS controller implementation. The operator is just Matlab-

M-file script used to command Matlab-Simulink to perform the 

simulation tasks and return back the results for post processing. 

The SS controller block is used to implement one time RIFSF 

and another time FSF controller. 
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A. Figure 1. A schematic of spinning satellite control based on SS algorithm 

 

A. Satellite Dynamic Model: 

The satellite under consideration is an axis-symmetric rigid 

satellite of evenly distributed masses and space disturbance 

free. Of particular intention, the satellite is considered 

inherently unstable due to two poles at the origin. The satellite 

moment of inertia matrix is given by [7].  
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 The satellite cannot keep its balance status and it could not 

come back to its initial orientation until controller is 

implemented. The non-linear equations of satellite motion can 

be shown as [8]. 

              zyzyxxx IIIT     

  xzxzyyy IIIT                           (1) 

              yxyxzzz IIIT                

Highly nonlinear characteristics of satellite dynamic system are 

linearized in a form of double-integral plant. There exists a 

linearized set of equation of motion, the coupling terms of 

angular velocities may be neglected for a small roll, pitch and 

yaw attitudes [9].  

 

 

                   xxx IT   

yyy IT                                         (2) 

                   zzz IT                             

To model the satellite spinning around the longitude axis where 

the moment of inertia is the largest, equation (2) will be 

modelled as  

zzzzzzz IIIT                             (3) 

 

Because the system is linear, the step response can be derived 

for any input amplitude. The state-variable method is used to 

describe the satellite dynamics. A set of first-order differential 

equations in the vector-valued state of the system is composed 

below 
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Where 1x and 2x are state variables, and z is the spinning 

angular displacement around z axis.  
The SS form can be given by     

     








DuCx

BuAxx

z


                               (5) 

Where u is control effort and  A is system matrix, B is input 

matrix, C is output matrix and D is direct transmission matrix, 

which are:  
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In this study external disturbance ( dM ) represented the solar 

pressure is not considered.  

B. Control Law Algorithms: 

Two concepts of control design working in connection with SS 

method are tested. FSF and RIFSF are applied and compared to 

assign a set of pole locations for the closed-loop system that is 

satisfactory dynamic transient response. 

 

 

1)  FSF:  
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The transfer function of spinning satellite implementing FSF 

controller can be expressed as 
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Obviously, FSF implementation has two poles which are 

directly influenced by the satellite design, i.e., the moment of 

inertia and control gains.  

 

2) RIFSF: 

For zero steady state error to step input, introducing the 

reference input into the system results in changing the control 

law as follows 
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The transfer function of spinning satellite implementing RIFSF 

controller can be expressed as 
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Again, RIFSF implementation has two poles which are directly 

influenced by the satellite design, i.e., the moment of inertia 

and control gains. However, the reference input constants have 

an implicit effect on the system performance as they appear as 

gain in the numerator. 

C. Pole Placement Method 

Using Eq.(6) the Eq.(5) becomes  

 

       BKxAxx                                    (12) 

The characteristic equation of the closed-loop system is 

  BKAsI det                 (13) 

An nth order polynomial in s containing the gains K1,…,  Kn . 

Assuming the desired pole roots locations are  

nssss ,....,, 21                         (14) 

The corresponding control characteristic equation is 

 

     0...21  nSSSSSS           (15) 

The K vector is obtained by matching coefficients of Eq.(15) 

with the characteristic equations of Eqs.(7) and (11). 

The dominant second order poles approach is considered here 

due to feasibility when higher order characteristic equations. In 

this method the poles are selected to satisfy the two conditions 

of controllability and observability. 

The controllability matrix  is computed as 

      
T

nBAABB 1...               (16) 

The system is said to be controllable for controllability matrix 

 is non-singular.  

The observability matrix O is calculated by 

   
T

nCACACO 1...    
   

            (17) 

The system is said to be observable for the observability matrix 

O is non-singular.  

D. Model and Simulation  

The implementations of FSF and RIFSF controller into 

spinning satellite dynamic model are schematically shown in 

(Figures. 2 & 3). A Matlab M-file script was used to provide 

workability to simulation model. The results obtained from the 

simulations are returned back to the script to post process them. 

The uncontrolled satellite has transfer function  
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Where r is reference input command and the overall transfer 

functions of FSF and RIFSF controllers for a spinning satellite 

is given respectively. 
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Figure 2. A simulation diagram of FSF controller of spinning satellite 
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Figure 3. A simulation diagram of RIFSF controller of spinning satellite 

 

3. Results and Discussions 

The main results obtained in this study, are shown and a brief 

discussions are outline to elucidate the implication of the 

results. 

E. System Eigenvalues 

Figure.4 shows the root locus comparisons before 

implementing control algorithms with FSF and RIFSF 

controllers. Two poles at the origin of uncontrolled satellite 

make the spinning unstable. Stable eigenvalues of -3.6000 ± 

1.7436i and -0.0125 ± 0.0066i are produced by RIFSF and FSF 

controllers respectively. For compact root locus comparisons 

with uncontrolled satellite and FSF controller, RIFSF gains are 

normalised by 100. Cleary, just the real part of eigenvalues of 

RIFSF controller is normalised by 100 but the imaginary part is 

normalised by about 4.5. The locations of eigenvalues of 

uncontrolled satellite are moved by RIFSF and FSF controllers 

to the left hand side of s-plane but they are not too far from the 

original locations based on FSF controller. Evidently, RIFSF 

controller has more stable roots than FSF controller since the 

eigenvalues are far away in the left hand side of s-plane. 

Figure.5 shows a close up of root locus of uncontrolled satellite 

and FSF controllers. Although the real part of FSF eigenvalues 

are too close to the poles of uncontrolled satellite the imaginary 

part of FSF eigenvalues produces damped oscillation to 

unstable response of spinning satellite.  
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Figure 4. Root locus of uncontrolled satellite with RIFSF and FSF controllers 
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Figure 5. A close up view of root locus of uncontrolled satellite and FSF controller 
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F. Controller Gain Contribution 

The contributions of each part of controller effort u ( 11KN x , 

22KN x , uN , zK 1 and zK 2 ) is investigated based on both 

RIFSF and FSF control implementations to uncontrolled 

spinning satellite. Figure.6 shows the contributions of FSF 

controller gains whereas (Figure.7) displays the contributions 

of RIFSF controller gains. The convergence of FSF control 

effort u occurs too late at about 400 sec, shown by starred line. 

The contribution of zK 2  part (diamond line) has the averaged 

value of 0.0175 which is eliminated by -0.0175 produced with 

zK 1  part (squared line). On the contrary, a fast convergence 

is obtained from RIFSF control effort u at an early time. 

Clearly, a fluctuating convergence around zero is seen by a 

starred line in (Figure.8) and the most contribution to u comes 

from zK 2 part (diamond line). However, the contributions of 

uN (triangular mark) and 22KN x  (plus mark) are 

considerably small. Nevertheless, the quite large contribution 

of 11KN x (circled line) is cancelled with zK 1  part  (squared 

line). 
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Fig. 6 The contributions of FSF controller gains 
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Figure 7. The contributions of RIFSF controller gains 
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Figure 8. A close up view of the contributions of RIFSF controller gains 

 

G. Deadbeat Response 

A comparison of the performance of FSF and RIFSF 

controllers for a spinning satellite is shown in (Figure.9). 

Clearly, RIFSF performs well to meet the deadbeat 

specifications. Although RIFSF controller adequately tracks 

unity step input command it implements expansive impractical 

gains. However, FSF controller is not too bad for practical 

implementations since it deploys reasonable gains. A close up 

view of the response obtained by RIFSF and FSF controllers 

during the simulation time between 0-450 sec is shown in 

(Figure.10). Obviously, FSF is slower than RIFSF in terms of 

rise and settling times. Figure. 11 shows a comparison of 

steady state convergence between FSF and RIFSF controllers. 

Apparently, RIFSF controller promptly shows steady state 

behaviour in a comparison with FSF controller which 

converges at approximately 800 sec. An average of zero steady 

state error is approximately produced by RIFSF controller in 

contrast to FSF controller which produces about 0.4% steady 

state error. The smooth convergence which is seen from FSF 

controller implementation refers to the contribution seen by the 

control effort u shown in (Figure.8). However, the fluctuating 

convergence based on RIFSF controller implementation 

(Figure. 11) is due to that was produced by the control effort u 

as seen in (Figure. 8).  
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The simulation and analytical results are agreed well based 

on dominant second-order poles. As early shown, RIFSF and 

FSF have dominate poles at -3.6000 ± 1.7436i and -0.0125 ± 

0.0066i respectively. Standard performance measures are 

usually defined in terms of the step response. The swiftness of 

response is measured by the peak time pT  and rise time rT . 

However, the track to desired response is examined by the 

settling time sT and the percent overshoot  P.O. The peak time 

TP is calculated by 

   
21 






n

pT                  (18) 

The liner approximation of analytical expression of rise time Tr 

can be found by 

 

 
n

rT


 6.016.2 
                          (19) 

The settling time TS for which the response remains within 2% 

of the final values is given by 

   n
sT



4


                            (20) 

The present overshoot is found by 

  
21/

100..
 

 eOP                  (21) 
Table (1) shows a comparison between the simulation results 

obtained from RIFSF controller for spinning stabilisation 

satellite and analytical calculations based on Eqs. (18-21). 

Table (2) shows a comparison between the simulation results 

obtained from FSF controller for spinning stabilisation satellite 

and analytical calculations based on Eqs. (18-21). FSF 

controller has the damping ratio  of 0.885 and the undamped 

frequency n of 0.014 rad/sec versus 0.9 and 4 rad/sec 

associated with RIFSF controller. Those dynamic parameters 

are found based on the conditions of controllability C and 

observability O matrices not being singular, i.e. Eqs. (16-17).  

Table 1. A performance comparison of RIFSF controller and analytical 

calculations 

Category (sec)Tp

 

(sec)Tr

 

(sec)Ts  P.O. % 

RIFSF 
controller 

1.7206 0.7754 1.1023 0.285 

Analytical 

calculation 

1.8018 0.6360 1.1111 0.255 

 

Overall, a reasonable agreement is found between the 

simulation results and analytical calculations. The discrepancy 

between RIFSF controller and analytical calculation in 

rT shown in Table (1) may refer to the liner approximation of 

analytical expression Eq. (19), particularly for 770.  [6]. 

RIFSF controller produces so swifter and more accurate 

response than FSF controller for spinning stabilisation satellite. 

A satisfactory deadbeat response is seen from RIFSF controller 

in terms of overshoot and steady state error. As may be noticed, 

the settling time is smaller than the peak time for RIFSF 

controller due to the deadbeat specifications met. 

 

Table 2. A performance comparison of FSF controller and analytical 

calculations 

Category (sec)Tp

 

(sec)Tr

 

(sec)Ts

 

P.O.  
% 

FSF controller 477.60 174.10 319.60  0.285 

Analytical 

calculation 

477.20 177.62 319.65  0.255 
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Figure 9. Deadbeat response of angular displacement attitude to unit step input command 
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Figure 10. Zooming in view of angular displacement attitude response. 
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Figure 11. FSF vs RIFSF for a steady state convergence 

 

4. Conclusions 

This paper has been devoted to model and control spinning 

satellite. The satellite is intentionally chosen in an unstable 

mode. The aim has been to achieve a robust spin stabilization 

of the satellite manoeuvre. A successful implementation of two 

categories of SS control algorithms is achieved for a 

satisfactory performance of spinning satellite. FSF controller is 

compared with RIFSF arrangement for deadbeat response to 

step input command. To obtain feasible values of angular 

velocity, ramp angular displacement command is used to excite 

the spinning system of a satellite. For the validation of  the 

simulation model, the most significant results obtained from the 

simulation are compared with analytical results based on 

dominant second-order poles of 0.9-damping ratio. 

 Satisfactory agreements are found in terms of overshoot, rise 

time, settling time and steady state response. Although RIFSF 

meets reasonable deadbeat specifications; overshoot of 0.2%, 

rise time of 0.65 sec, settling time of 1.2 sec and zero steady 

state error, it uses impracticable large gains in comparison with 

FSF which shows a humble deadbeat tracking in terms of a 

slow response. Thus RIFSF is expansive, too accurate but 

reliable and fast whereas FSF is slow but cheap. However, 

those controller gains are not unique and they depend on the 

optimization relaxations. The system has very good 

performance and come back to its initial orientation quickly 

when the disturbances are zero.   

Future study may be formulated to use reduced-order estimator 

method to confirm the selected root locations. In case of space 

disturbance is not excluded as they appear in a real world SS 

control algorithms may not be robust enough to eliminate such 

external disturbance effects. Therefore, SS controller may not 

be used in practical world. H  robust attitude controller may 

be designed to compensate such problem.  
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