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 The human pose estimation is a problem of localizing human joints in a single image, and that is 

still a challenge in the field of computer vision. The hourglass network has been used in many 

researches to achieve good performance in human pose estimation problems. For human pose 

estimation problem, not only high-level features but also low-level features are important for 

understanding the whole human body. However, the vanilla hourglass network has the problem of 

passing only high-level features to the next stack. Therefore, we propose a network structure that 

can solve the problems of the vanilla hourglass by using an additional skip connection. The 

proposed skip connection improves network performance by passing relative low-level features to 

the next stack. In addition, the skip connection is a simple element-wise Sum operation, so there 

is no increase in the number of parameters. In this work, we use the well-known human pose 

estimation data set, MPII, to evaluate the proposed method. We conducted experiments to evaluate 

the objective performance of the proposed method, and it was confirmed through this evaluation 

that the proposed method improves the performance of human pose estimation of the vanilla 

hourglass network. 

 
This is an open access article under the CC BY-SA 4.0 license. 
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1. Introduction 

The human pose estimation problem is one of 

challenges in the field of computer vision.  The human 

pose is one of the key information for extracting human 

behavior, that used in artificial intelligence CCTV, 

autonomous vehicles and security system. The goal of 

human pose estimation problem is to localize joints from 

single 2D images. The traditional method estimates the 

pose using additional equipment (e.g., stereo camera, 

depth sensor, etc.). Recently, the human pose estimation 

problems performance has been greatly improved by 

development of Convolutional Neural Network (CNN) [1-

3]. Nevertheless, the problem of estimating human posture 

is still difficult to solve due to the diversity of joints, 

camera angles, lighting condition, clothing and partial 

occlusion. Fig.1 Shows difficulty of human pose 

estimation.  

 
Figure 1. Images from the MPII dataset, illustrating the 

difficulty of human pose estimation. 
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The stacked hourglass network [1] is one of well-known 

method for human pose estimation. It has a stacked 

structure of hourglass modules composed of residual 

blocks [10]. Since the hourglass network has performed in 

the human pose estimation problem, a number of studies 

have used it as a backbone [4-9]. 

In stacked hourglass network, the output of the current 

stack is added to the input of the current stack and used as 

the input of the next stack. Because of this structure, only 

relatively high-level features are passed to the next stack. 

This can be a factor that degrades network performance. 

Therefore, we propose a new stacked hourglass network 

structure that solves the problem that only high-level 

features are delivered to the next stack. The proposed 

structure can maintain relative low-level features using 

additional skip connections. And that structure can 

improve performance without increasing the number of 

network parameters. We used the well-known human pose 

estimation dataset, MPII, for the objective evaluation of 

the proposed method. We confirmed through experiments 

that the proposed method improved the performance of the 

stacked hourglass network. 

2. APPROACH 

 
Figure 2. Vanilla Stacked hourglass network structure. 

 

An input of the hourglass network is given an image of 

size 256x256. The input is reduced to 64x64 through the 

residual block and given as the input of the hourglass 

module. The hourglass module consists of a residual block 

with a bottleneck structure. In the encoder part of the 

hourglass module, the size of the feature is reduced using 

max-pooling, and the size is restored again using the 

nearest neighbour in the decoder. This structure is repeated 

by the stack and more accurate features are extracted. The 

hourglass network used in this paper is shown in Figure 2. 

Each stack in the hourglass network is stacked using a 

skip connection. Therefore, input and output of the 

previous stack (𝑛 − 1) are added and passed to the input 

of the next stack (𝑛). In this structure, only the high-level 

features continue to be passed to the next stack. However, 

low-level features are also important for the network to 

understand a human whole body. So, we propose a new 

structure of hourglass network that can maintain 

information of low-level features. Fig.3 is detail of the 

proposed new hourglass network structure. The proposed 

additional skip connection (Red dashed arrow in Fig.3) is 

located in front of the hourglass module encoder that can 

deliver the previous stacks low-level feature directly to 

next stack. This structure helps the network understand the 

entire human body by maintains low-level features as well 

as high-level features throughout the network. 

3. RESULT 

We use the well-known MPII [11] data set to evaluate 

the performance of the proposed new hourglass network. 

The MPII dataset contains over 40,000 images of people 

with joint information, of which around 25,000 images 

were collected in real-world contexts. For human pose 

estimation, 16 coordinates for each joint were labeled for 

each person. 

In order to evaluate the performance of our method, we 

compare the performance with the state-of-the-art 

lightweight method for stacked hourglass network with 

various experiments. As an evaluation method, we used 

Percentage of Correct Keypoints head (PCKh) as used in 

[12]. The PCKh@0.5 uses 50% of the ground-truth head 

segment length as a threshold. If the error rate is lower than 

Figure 3. Proposed hourglass structure, that uses an additional skip connection (red dashed arrow in figure). 
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the threshold value when comparing predicted value with 

ground-truth, it is determined to be the correct answer. 

We followed the same training process as used for the 

original stacked-hourglass network with an input-image 

size of 256 ×  256. For the data augmentation required 

for training, rotation ( ±30∘ ), scaling (  ±0.25 ), and 

flipping were performed. The model used in all 

experiments was written using PyTorch [13]. We used the 

Adam optimizer [14] for training and with a batch size of 

8. The number of training epochs was 300, and initial 

learning rate was 2.5 × 10−4 , which was reduced to 

2.5 × 10−5 , 2.5 × 10−6  in the 150th and 220th epochs. 

The network was initialized by a normal distribution 

𝒩(𝑚, 𝜎2) with mean m = 0 and standard deviation σ = 

0.001. 

ℒ =
1

𝑁
∑ ∑‖𝐻𝑛(𝑖, 𝑗) − �̂�𝑛(𝑖, 𝑗)‖

2

𝑖𝑗

𝑁

𝑛=1

 (1) 

The ground-truth heat map 𝐻 = {𝐻𝑘}𝑘=1
𝐾  was generated 

by applying gaussian around 𝑘  body joints. The loss ℒ 

between the heat map �̂� = {�̂�𝑘}𝑘=1
𝐾  and 𝐻  predicted by 

network used Mean Squared Error (MSE). Loss is 

calculated using the predicted heatmaps from each stack 

and summed up by intermediate supervision.  

 

TABLE I 

COMPARISON OF VANILLA HOURGLASS NETWORK WITH 

MPII VALIDATION DATASET. (DOUBLE STACKED) 

Network 
Architecture 

PCKh@0.5 
(Mean) 

Hourglass (Vanilla) 87.8 

Ours 88.7 

TABLE II 

COMPARISON OF OTHER METHODS WITH MPII VALIDATION DATASET.  

Method 

H
ea 

Sh
o

 

Elb
 

W
ri 

H
ip

 

kn
e

 

A
n

k Mean 

Pishchulin et al. [15] 74.3 49.0 40.8 34.1 36.5 34.4 35.2 44.1 

Tompson et al. [3] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6 

Carreira et al. [16] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3 

Tompson et al. [17] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0 

Hu et al. [18] 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4 

Pishchulin et al. [19] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4 

Lifshitz et al. [20] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0 

Gkioxary et al. [21] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1 

Rafi et al. [22] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3 

Belagiannis et al. [23] 97.7 95.0 88.2 83.0 87.9 82.6 78.4 88.1 

Insafutdinov et al. [24] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5 

Wei et al. [25] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5 

Newell et al. [1] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9 

Sun et al. [26] 98.1 96.2 91.2 87.2 89.8 87.4 84.1 91.0 

Ours (8 stacks) 98.1 96.4 92.1 87.7 90.3 88.1 82.5 91.1 

 
We trained and compared the double stack hourglass 

network to compare it with the vanilla hourglass network. 

We confirmed that the proposed method improved the 

vanilla hourglass network by this experiment. The results 

of this experiment are summarized in Table I. 

We compared the proposed stacked hourglass network 

(8 stack) with other methods. The results of this 

experiment are summarized in Table II. Fig.4 presents a 

visualization of pose estimation results for the MPII data 

set in the proposed 8-stack network. We confirmed from 

these experiments that the proposed method improved the 

performance of stacked the hourglass network. 

 

 

Figure 3. Prediction results of proposed method for MPII 

dataset 

4. Conclusion 

In this paper, we have proposed a stacked-hourglass 

network with additional skip connection for human pose 

estimation. The vanilla stacked hourglass network delivers 

only the relatively high-level features, which are the 

outputs of each hourglass module, to the next stack. To 

solve this problem, we added an additional skip-

connection to the hourglass module, which reflects low-

level features to the next stack to improve network 

performance. In addition, since the added skip-connection 

is an elementwise-sum operation, so there is no significant 

effect on the computational cost and the flow of the 

gradient can be improved. We conducted various 

experiments to evaluate the experiment, and through this, 

we confirmed that the proposed method improved the 

existing hourglass network architecture. 
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