
International Journal of Applied Mathematics, Electronics and Computers 8(1): 001-006, 2020

e-ISSN: 2147-8228

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS

ELECTRONICS AND COMPUTERS

www.dergipark.org.tr/ijamec

International

Open Access

Volume 08
Issue 01

March, 2020

* Corresponding author. E-mail address: dakgun@sakarya.edu.tr

DOI: 10.18100/ijamec.652564

 Research Article

CUDA Based Computation of Quadratic Image Filters

Devrim Akgun a,* , Süleyman Uzun b

aSoftware Engineering, Sakarya University, Sakarya, 54187, Turkey
bComputer Engineering, Bilecik Şeyh Edebali University, Bilecik, 42002, Turkey

 ARTICLE INFO ABSTRACT

Article history:

Received 28 November 2019

Accepted 25 January 2020

 Image processing applications usually requires nonlinear methods due to the nonlinear
characteristics of images. Quadratic image filter which is a class of nonlinear image filters are

widely used in practice such as noise elimination edge detection and image enhancement. On the

other hand, second order products of the pixels make quadratic image filters computationally

expensive to implement when compared to linear convolution. In the last decade, CUDA
accelerated computing has been widely used in image processing applications to reduce

computation times. In this study, an efficient method for the CUDA acceleration of the quadratic

image filter has been implemented. For this purpose, alternative algorithms were examined

comparatively since the performance of the GPU is sensitive to memory utilization. Because
quadratic filter has a large number of coefficients and quadratic terms, the algorithm which utilizes

the shared memory for storing image blocks provided the best throughput among the examined

methods. Comparative results that were obtained using various images in different sizes show

significant accelerations over sequential implementation.

This is an open access article under the CC BY-SA 4.0 license.

(https://creativecommons.org/licenses/by-sa/4.0/)

Keywords:

CUDA

GPU computing

Quadratic Image Filter

Volterra filter

1. Introduction

Image processing applications such as noise filtering, edge

detection, and image enhancement are usually implemented

using convolution or correlation operations. Convolution

based image filtering involves moving a filtering kernel over

the whole image to compute the pixels of output image. Each

pixel is computed by multiplying the selected window of

pixels from the input image with a filtering kernel. Then the

multiplication results are summed and the resulting value is

written to target pixel. [1]. Due the nonlinear structure of

image contents, performance of linear filters may not be

satisfactory in some applications. In such cases, nonlinear

filters can be preferred over linear filters [2]. Theoretically,

Volterra series approach is usually used to model nonlinear

systems using infinite elements. In practice, Volterra model

of a nonlinear system is defined by truncating it to a

reasonable size. Usually, the preferred approach is to

truncate it to include up to second order terms to reduce

computational complexity and these filters are usually called

as Quadratic Image Filter (QIF) [3]. QIFs are utilized in

various research fields such as Gaussian noise or impulsive

noise removal due to its edge preserving features [4]–[6].

QIFs are successful in edge detection applications [7], [8],

medical image processing applications such as enhancement

or noise reduction for mammogram images [9]–[15]. QIFs

are utilized for feature extraction to use in face recognition

applications [16]–[18]. QIFs requires to compute second

order multiplications for computing a filtered pixel [19]–

[21]. Hence, required computations considerably larger than

a convolutional filter of the same window size. For example,

a QIF application using 33 window requires additional 45

number of multiplications for obtaining all possible second

degree of multiplications of the input pixels. Also, another

45 number of multiplications for window weights are

required. On the other hand linear convolution only requires

9 number of multiplications with windows weights. Recent

GPU (Graphics Processing Unit) products provides a good

mean to accelerate computation of image processing

applications. For this purpose, NVIDIA provides CUDA

(Compute Unified Device Architecture) model to utilize

http://www.dergipark.org.tr/ijamec
mailto:dakgun@sakarya.edu.tr
https://doi.org/10.18100/ijamec.652564
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0002-0770-599X
https://orcid.org/0000-0001-8246-6733

Akgun and Uzun, International Journal of Applied Mathematics, Electronics and Computers 8(1): 001-006, 2020

- 2 -

GPU efficiently. CUDA enables writing programs for high

performance parallel applications. Various image processing

algorithms that can be parallelized utilizes the GPU

technology for acceleration [22]–[28]. Since pixel the

operations of QIF are independent, the algorithm can be

parallelized to run on GPU environment.

The focus of the present study is to develop an efficient

algorithm based on CUDA for the GPU accelerated

computing of QIFs. Sequential implementation of the QIFs

usually require long execution durations when running times

are investigated on an average desktop processor. Hence, an

efficient CUDA based implementation may help utilization

of QIFs practical. GPU acceleration is highly dependent on

the programming approach and the utilization of GPU

memory. Efficient approaches usually requires more

complicated algorithm designs and programming

approaches. Hence, three alternative implementations from

simple to complex were discussed for comparison. As will

be shown by experimental results the proposed method

provides significant reductions in computation time when

compared to sequential execution. Organization of the paper

is as follows; in the second section background information

for QIFs was given. In the third section, implementation of

the alternative algorithms using CUDA kernels were

explained in detail. In the fourth section, experimental

execution times using sequential implementation and CUDA

implementations were presented. Finally conclusions about

the method and the results were given.

2. Background

QIFs, which are in the subclass of Volterra filters are the

important alternatives of the linear filters[3], [29]. Eq-1

describes the output equation of the QIF. In this study, only

the terms up to second degree were used and the constant

term is excluded;

𝑜(𝑚, 𝑛) = 𝑜1(𝑚, 𝑛) + 𝑜2(𝑚, 𝑛) (1)

In above equation, m and n show the pixel coordinates to

be filtered and o(m,n) shows the filtered output pixel. The

linear component of the output is represented by o1(m,n) and

the quadratic part is represented by o2(m,n). Eq-2 shows the

expressions for the outputs o1(m,n) and o2(m,n).

𝑜1(𝑚, 𝑛) = ∑ ∑ 𝑤𝑖,𝑗
1𝑀

𝑗=−𝑀 𝑥𝑚+𝑖,𝑛+𝑗
𝑀
𝑖=−𝑀

𝑜2(𝑚, 𝑛) = ∑ ∑ ∑ ∑𝑀𝑙=−𝑀
𝑀
𝑘=−𝑀

𝑀
𝑗=−𝑀

𝑀
𝑖=−𝑀

𝑤𝑖,𝑗,𝑘,𝑙
2 𝑥𝑚+𝑖,𝑛+𝑗𝑥𝑘+𝑖,𝑙+𝑗

} (2)

Where M means that a window size of (2M+1)(2M+1) is

used for filtering. xm+i,n+j represents a pixel taken from the

input image, w1
i,j and w2

i,j,k,l represents first order and second

order filter weights respectively. The equations for linear and

quadratic components can be expressed simpler. For this

purpose, linear part of the expression can be redefined using

one dimensional summation as given by Eq-3.

𝑜1(𝑚, 𝑛) = ∑ 𝑊1(𝑖)𝑋𝑚,𝑛
1 (𝑖)

𝑁×𝑁−1

𝑖=0

 (3)

Where N is equal to 2M+1. W1 describes weights, Xm,n is

the selected window of pixels as given by Eq-4.

𝑊1 = [𝑤0
1 𝑤1

1 𝑤2
1 … 𝑤𝑁𝑥𝑁−1

1]

𝑋𝑚,𝑛
1 = [𝑥0 𝑥1 𝑥2… 𝑥𝑁𝑥𝑁−1]

} (4)

For further simplification, above expression can be written

as a dot product as below;

𝑜1(𝑚, 𝑛) = 𝑊1𝑋𝑚,𝑛
1 𝑇

 (5)

Similar to above arrangements, the quadratic component

can be simplified. Initially it is useful to redefine it in two

dimensional form as below;

𝑜2(𝑚, 𝑛) = ∑ ∑ 𝑤𝑖,𝑗
2 𝑋𝑚,𝑛

1 (𝑖)𝑋𝑚,𝑛
1 (𝑗) 𝑁×𝑁

j=0
𝑁×𝑁
i=0 (6)

Most of the multiplications of input pixels in Eq-6 is

symmetric. This is shown by Eq-7 where the quadratic input

terms forms a matrix of (N×N)×(N×N) size.

𝑋𝑚,𝑛
1 𝑋𝑚,𝑛

1 𝑇
=

[

𝑥0𝑥0 𝑥0𝑥1 … 𝑥0𝑥𝑁×𝑁−1
𝑥1𝑥0 𝑥1𝑥1 … 𝑥1𝑥𝑁×𝑁−1
⋮ ⋮ ⋮ ⋮

𝑥𝑁×𝑁−1𝑥0 𝑥𝑁×𝑁−1𝑥1 … 𝑥𝑁×𝑁−1𝑥𝑁×𝑁−1

]

(7)

In order to eliminate symmetric terms in Eq-6, the initial

value of the j is set to i as shown by Eq-8;

𝑜2(𝑚, 𝑛) = ∑ ∑ 𝑤𝑖,𝑗
2 𝑋𝑚,𝑛

1 (𝑖)𝑋𝑚,𝑛
1 (j) 𝑁×𝑁

j=i
𝑁×𝑁
i=0 (8)

The second order products of input given by Eq-8 do not

contain symmetric multiplications. Therefore, the unique

multiplications can be rewritten in vector form;

𝑋𝑚,𝑛
2 = [𝑥0𝑥0 𝑥0𝑥1 ⋯ 𝑥𝑁𝑥𝑁−1𝑥𝑁𝑥𝑁−1] (9)

Also the corresponding weights used in Eq-8 can be

written in vector form as below,

𝑊2 = [𝑤0
2 𝑤1

2 𝑤2
2 … 𝑤𝐵

2] (10)

Therefore, the quadratic part of the Eq-1 can be expressed

as a dot product as below;

𝑜2(𝑚, 𝑛) = 𝑊2𝑋𝑚,𝑛
2 𝑇

 (11)

The number of elements in W2 and X2
m,n depends on the

size of the filter kernel. The number of terms in quadratic

vector excluding the symmetric terms for N×N size of kernel

can be calculated by Eq-12;

𝐵 = 𝑁 × 𝑁(1 + 𝑁 × 𝑁)/2 (12)

The sum of linear and quadratic part gives the total

equation to filter a pixel as shown by Eq-13.

𝑜(𝑚, 𝑛) = 𝑊1𝑋𝑚,𝑛
1 𝑇

+𝑊2𝑋𝑚,𝑛
2 𝑇

 (13)

Akgun and Uzun, International Journal of Applied Mathematics, Electronics and Computers 8(1): 001-006, 2020

- 3 -

3. Proposed implementation

In the present study, three alternative method for the

CUDA implementation of the QIF were investigated. Before

addressing the most efficient method described in this study,

the two alternative approaches were also discussed for

comparison. First method which is the most straightforward

implementation shown by Algorithm 1.

Every CUDA thread executes the kernel given by

Algorithm 1 and filters a pixel selected according to the

block and thread number. As explained in the previous

section, once GPU initialized the data that kernel uses

transferred to global memory. Before filtering function is

executed, the neighborhood of selected pixel from the global

memory is copied to global memory to reduce repeated reads

from the global memory. Then, kernel filters a pixel selected

according to pixelId variable using quadraticFilter()

function. In a simpler implementation, this operation can

also be discarded image data can be used directly. But due to

the computation of quadratic terms, it is obvious that

repeated reads of image data from global memory will

decrease the performance. Filter functions normalizes the

input pixels to 0-1 interval. After linear and quadratic

components are computed, it is normalized back to 0-255

interval and it is written to back to pixel location in global

memory area where the output image is defined.

Algorithm 2 shows the kernel implementation using

Method 2 where block shared memory is utilized to improve

the throughput. In addition to input pixels, each threads uses

weights from global memory during filtering. On the other

hand copying weights to thread local memory is not useful,

since each thread reads weights one time and therefore this

doesn’t change the number of global memory reads. In this

case block shared memory were used to reduce the number

of global memory reads. Prior to filtering operation, the

weights are copied to block shared memory by each thread

as shown by the line 11 of Algorithm 2. Therefore the

number of global memory accesses is reduced to the number

of blocks. Similar to Algorithm 1, this method is also uses

thread local memory for storing the neighborhood of pixel to

be filtered. Once all weights are copied to shared memory,

all threads in the same block read the weights from block

shared memory. However, Method 2 requires

synchronization of threads in a block to ensure copy

operation completed before filtering starts. Above methods

store an input pixel and its neighborhood in the local thread

memory to reduce the memory reads from global memory.

However, each thread reads neighborhood of a pixel to be

filtered repeatedly. It is desired that once a pixel is read from

global memory, it doesn’t required to be read repeatedly. For

this purpose an approach that use block shared memory for

storing pixels of a block size is used. Method 3 is based on

partitioning the input image into sub-blocks and storing

every block in the block shared memory. Therefore repetitive

accesses to global memory is eliminated. Although the pixels

at the edges of blocks are read two times from the global

memory, the other pixels are read one time from the global

memory. After each of the sub-images are carried to block

shared memories, no access to global memory is required to

implement filtering.

Method 1 requires reading a mask size of pixels and the

filter weights from global memory for filtering a pixel. In

Method 2, the weights are copied to block shared memory

for each block and therefore reading the weights from the

global memory is reduced to the number of blocks. Method

3 also reduces the necessity of reading the neighbor of each

pixel for filtering by carrying the sub-part of image to shared

memory. The number of sub-blocks is determined by the

number of threads in a block as shown by Eq16. In this

Akgun and Uzun, International Journal of Applied Mathematics, Electronics and Computers 8(1): 001-006, 2020

- 4 -

equation splitSize shows the width and height of a block,

borderLines is the number of additional lines on all sides of

a sub-block. In the present study, the number of threads in a

block is set to 256 and therefore image is split into sub-

images of the size of 16×16. Since, sub-image in a block also

contains the border lines, the sub-image size to be filtered in

a 16×16 block is 14×14 for a 3×3 filtering mask. Threads in

border lines were used for copying the image. Once

subImageSize variable is determined in Eq. 16, blockCols

and blockRows which are the number of columns and the

number of rows respectively can be determined.

𝑏𝑙𝑜𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ = 16
𝑏𝑜𝑟𝑑𝑒𝑟𝐿𝑖𝑛𝑒𝑠 = 1
𝑠𝑢𝑏𝐼𝑚𝑔𝑆𝑖𝑧𝑒 = 𝑏𝑙𝑜𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ − 2 × 𝑏𝑜𝑟𝑑𝑒𝑟𝐿𝑖𝑛𝑒𝑠 = 14
𝑡ℎ𝑟𝑒𝑎𝑑𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 = 𝑏𝑙𝑜𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ × 𝑏𝑙𝑜𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ = 256

𝑏𝑙𝑜𝑐𝑘𝐶𝑜𝑙𝑠 = (𝑛𝐶𝑜𝑙𝑠 + 𝑠𝑢𝑏𝐼𝑚𝑔𝑆𝑖𝑧𝑒 − 1) / 𝑠𝑢𝑏𝐼𝑚𝑔𝑆𝑖𝑧𝑒
𝑏𝑙𝑜𝑐𝑘𝑅𝑜𝑤𝑠 = (𝑛𝑅𝑜𝑤𝑠 + 𝑠𝑢𝑏𝐼𝑚𝑔𝑆𝑖𝑧𝑒 − 1) / 𝑠𝑢𝑏𝐼𝑚𝑔𝑆𝑖𝑧𝑒

𝑛𝑢𝑚𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 = 𝑏𝑙𝑜𝑐𝑘𝐶𝑜𝑙𝑠 × 𝑏𝑙𝑜𝑐𝑘𝑅𝑜𝑤𝑠 }

 (14)

After the parameters defined by Eq. 16 are set, the kernel

shown by Algorithm 3 is called to filter image. Before

filtering starts, block shared arrays are allocated for weights

and sub-image and then weights are copied to block shared

memory as in Method 2. After block coordinates and thread

coordinates and the corresponding filter coordinates are

determined, a sub-image of block size is copied to block

shared memory. Each pixel is copied by a thread and all

threads are synchronized to ensure that all pixels in a sub-

block are copied before filtering starts. Both transferring

filter weights and a block of input image to shared block

memory reduce the global memory accesses significantly.

4. Experimental Results

Experimental results were obtained by measuring running

durations of sequential implementations on CPU and parallel

implementation on GPU using the described approaches in

the previous section. Sequential execution durations were

obtained using a computer that has Intel(R) Core(TM) i7-

4710MQ CPU@2.50GHz processor. CUDA based

execution durations were also obtained on the same

computer which has NVIDIA GeForce GTX 960M video

card. The algorithms were written using VC++ Visual Studio

2015™ environment. Color test images used in the

performance measurements were read using OpenCV

library[30]. Before processing, image data is normalized to

0-1 interval and stored in float data type for both CPU and

GPU implementations. The weights of the quadratic filter

were determined by optimization approach using training

and test images [31]. An example filtering result for QIF

using the example weights were given in Figure 1 which also

contains original image, noisy image and other filtering

results using Gaussian filter, Average filter and Median filter

for comparison.

Table 1 shows the experimental measurements for

execution durations repeated 8 times for the realized

methods using a test image 1024×768 and 3×3 filter mask

size. GPU execution times for the first run is relatively slow

when compared to the rest of the results. In GPU computing

this is usually called as warm-up run and discarded in

performance measurements [32]. Additional kernel launches

can be used to remove warm-up overheads. Because the size

of the image has significant effect on the computation

durations, the performance results were obtained for various

sizes of images.

Table 1. Example running times (milliseconds) for CPU, GPU
naïve and GPU SMM for 1024×768 image and 3×3 filter mask

CPU

Method 1 Method 2 Method 3

kernel +

init.
kernel

kernel +

init.
kernel

kernel +

init.
kernel

86.47 679.7 5.630 692.5 5.264 665.1 1.172

87.13 9.294 5.680 8.613 5.254 4.185 1.182

85.19 8.825 5.623 8.430 5.262 3.852 1.175

82.98 9.177 5.594 8.729 5.299 4.033 1.184

83.99 9.681 5.592 8.795 5.268 4.028 1.198

83.79 9.177 5.632 8.524 5.265 4.430 1.207

83.04 8.902 5.611 8.927 5.268 4.207 1.192

86.32 9.039 5.633 8.974 5.278 4.452 1.216

Figure 1. Example filtering results using a synthetic reference
image

Table 2. Running durations (milliseconds) for CPU and GPU
implementations

Image size

CPU

Method 1 Method 2 Method 3

kernel +

init.
kernel

kernel +

init.
kernel

kernel +

init.
kernel

640×480 18.89 2.967 1.265 2.631 1.121 1.406 0.296

800×600 50.25 6.898 3.447 6.130 3.212 2.707 0.736

1024×768 88.41 9.849 5.650 9.074 5.259 4.120 1.190

1280×720 103.8 11.06 6.718 10.39 6.391 4.586 1.395

1440×900 137.0 15.04 9.487 13.95 9.030 5.982 1.941

1920×1080 220.6 22.43 15.11 20.85 14.52 8.595 2.949

2560×1440 391.3 37.18 26.10 34.66 24.67 14.45 5.306

3840×2160 938.7 83.33 64.08 81.10 62.32 30.14 11.81

Table 2 shows average computation times for 30 runs

using all approaches and various sizes of images ranging

Akgun and Uzun, International Journal of Applied Mathematics, Electronics and Computers 8(1): 001-006, 2020

- 5 -

from 640×480 to 3840×2160. According to results, both

kernel and kernel+initialization durations are considerably

shorter than the sequential execution durations. While

Method 1 and Method 2 provide close computation

durations, the best acceleration was obtained by using

Method 3. Kernel times where the filtering take place are

even smaller than the total time which includes initialization

times. Method 2 produced always smaller computation times

than compared Method 1. This is because, the weights are

read from block shared memory in Method 2 while weights

are read from global memory in Method 1. Because weights

are used one time by each thread for filtering, this doesn’t

provide significant acceleration like Method 3 where a block

of image transferred to block shared memory. All threads

uses the image data stored in shared memory. This

significantly reduces the number of accesses to global

memory and because each thread reads only a pixel from

global memory to store to shared memory. On the other

hand, the pixels at the edges are shared with blocks and they

are read two times by neighbor blocks.

5. Conclusion

Quadratic filters are computationally expensive to

implement due to the computation of all possible second

degree multiplications. In addition, these terms are

multiplied with weights and linear component is also

computed for determining an output pixel. According to

experimental evaluations, sequential implementation

produces long execution times resulting as the image size is

increased. In the present study, a GPU based method for the

acceleration of the quadratic filter was introduced. For this

purpose three alternative implementations from simple to

complex were discussed. The first method simply reads a

frame of pixels from global memory to thread local memory

and reads weights from global memory and apply quadratic

filtering to produce filtered pixel. Method 2 reads filter

weights global memory and keep them in shared memory for

the threads within the block. Therefore threads in a block

reads weights from shared memory instead of global

memory. Because each of the weights are read one time, this

doesn’t provide much improvement over Method 1. Method

3 requires the image be separated into a number of blocks

determined by a thread block size. Within each block, a

number pixels that is equal to the size of a block is filtered

by the threads of that block. The image to be filtered is

transferred to shared memory of each block to obtain better

performance results. Although Method 3 increases the

complexity of code it provides better management of

memory for reducing access times, and therefore produces

better results than the simpler implementations. The results

show that, Method 3 considerably reduces the running

duration of QIF when compared to CPU and other

implementations with GPU. In the future studies,

performance can further be improved using alternative

algorithmic and programming approaches.

References

[1] J. C. Russ, The image processing handbook. CRC press, 2016.

[2] I. Pitas and A. N. Venetsanopoulos, Nonlinear digital filters:

principles and applications, vol. 84. Springer Science & Business

Media, 2013.
[3] G. F. Ramponi, G. L. Sicuranza, and W. Ukovich, “A

computational method for the design of 2-D nonlinear Volterra

filters,” Circuits Syst. IEEE Trans., vol. 35, no. 9, pp. 1095–1102,

1988.

[4] L. Thomas, G. Krishnan, R. A. Mol, and A. Roy, “Removal of

Impulsive Noise from MRI Images using Quadratic Filter,” Int. J.

Eng. Res. Technol., vol. 3, no. 4, pp. 2220–2223, 2014.
[5] M. Meenavathi and K. Rajesh, “Volterra Filtering techniques for

removal of Gaussian and mixed Gaussian-Impulse noise,” Int. J.

Electr. Comput. Eng., vol. 1, no. 2, pp. 184–190, 2007.

[6] J. Zhang and Y. Pang, “Pipelined robust M-estimate adaptive

second-order Volterra filter against impulsive noise,” Digit.

Signal Process., vol. 26, pp. 71–80, Mar. 2014.

[7] V. S. Hari, V. P. Jagathy Raj, and R. Gopikakumari, “Quadratic

filter for the enhancement of edges in retinal images for the
efficient detection and localization of diabetic retinopathy,”

Pattern Anal. Appl., vol. 20, no. 1, pp. 145–165, Feb. 2017.

[8] V. S. Hari, V. P. Jagathy Raj, and R. Gopikakumari, “Unsharp

masking using quadratic filter for the enhancement of fingerprints

in noisy background,” Pattern Recognit., vol. 46, no. 12, pp.

3198–3207, Dec. 2013.

[9] Y. Zhou, K. Panetta, and S. Agaian, “Mammogram enhancement

using alpha weighted quadratic filter,” in Proceedings of the 31st
Annual International Conference of the IEEE Engineering in

Medicine and Biology Society: Engineering the Future of

Biomedicine, EMBC 2009, 2009, pp. 3681–3684.

[10] A. Pandey, A. Yadav, and V. Bhateja, “Design of new volterra

filter for mammogram enhancement,” in Advances in Intelligent

Systems and Computing, 2013, vol. 199 AISC, pp. 143–151.

[11] M. Kanamadi, V. Waghamode, and S. Bandekar, “Alpha

Weighted Quadratic Filter Based Enhancement for Mammogram,”
in Proceedings of International conference on “Emerging

Research in Computing, Information, Communication and

Applications” (ERCICA), 2013, pp. 68–74.

[12] V. Bhateja, M. Misra, S. U.-C. methods and programs in, and

undefined 2016, “Non-linear polynomial filters for edge

enhancement of mammogram lesions,” Comput. Methods

Programs Biomed., no. 129, pp. 125-134., 2016.
[13] V. S. Hari, R. V. P. Jagathy, and R. Gopikakumari, “Enhancement

of calcifications in mammograms using Volterra series based

quadratic filter,” in Proceedings - 2012 International Conference

on Data Science and Engineering, ICDSE 2012, 2012, pp. 85–89.

[14] G. Jothilakshmi and E. Gopinathan, “Mammogram Enhancement

Using Quadratic Adaptive Volterra Filter A Comparative

Analysis In Spatial And Frequency Domain,” ARPN J. Eng. Appl.

Sci., vol. 10, no. 13, pp. 5512–5517, 2006.
[15] V. Bhateja, M. Misra, S. Urooj, and A. Lay-Ekuakille, “A robust

polynomial filtering framework for mammographic image

enhancement from biomedical sensors,” IEEE Sens. J., vol. 13,

no. 11, pp. 4147–4156, 2013.

[16] A. Chakrabarty, H. Jain, and A. Chatterjee, “Volterra kernel based

face recognition using artificial bee colonyoptimization,” Eng.

Appl. Artif. Intell., vol. 26, no. 3, pp. 1107–1114, 2013.

[17] G. Feng, H. Li, J. Dong, and J. Zhang, “Face recognition based on
Volterra kernels direct discriminant analysis and effective feature

classification,” Inf. Sci. (Ny)., vol. 441, pp. 187–197, 2018.

[18] G. Feng, H. Li, J. Dong, and J. Zhang, “Direct discriminant

analysis using volterra kernels for face recognition,” in

Communications in Computer and Information Science, 2016, vol.

662, pp. 404–412.

[19] G. Sicuranza and G. Ramponi, “Adaptive nonlinear digital filters

using distributed arithmetic,” IEEE Trans. Acoust., 1986.
[20] G. Ramponi, “Edge extraction by a class of second-order

nonlinear filters,” Electron. Lett., vol. 9, no. 22, pp. 482–484,

1986.

[21] S. Mitra, “Image processing using quadratic volterra filters,” in

Akgun and Uzun, International Journal of Applied Mathematics, Electronics and Computers 8(1): 001-006, 2020

- 6 -

Computers and Devices for Communication (CODEC), 2012 5th

International Conference on, 2012, pp. 1–2.

[22] T. Kalaiselvi, P. Sriramakrishnan, and K. Somasundaram,

“Survey of using GPU CUDA programming model in medical

image analysis,” Informatics Med. Unlocked, vol. 9, pp. 133–144,

Jan. 2017.

[23] M. Soua, R. Kachouri, and M. Akil, “GPU parallel
implementation of the new hybrid binarization based on Kmeans

method (HBK),” J. Real-Time Image Process., vol. 14, no. 2, pp.

363–377, Feb. 2018.

[24] A. HajiRassouliha, A. J. Taberner, M. P. Nash, and P. M. F.

Nielsen, “Suitability of recent hardware accelerators (DSPs,

FPGAs, and GPUs) for computer vision and image processing

algorithms,” Signal Process. Image Commun., vol. 68, pp. 101–

119, Oct. 2018.
[25] Y. Zhou, F. He, and Y. Qiu, “Accelerating image convolution

filtering algorithms on integrated CPU–GPU architectures,” J.

Electron. Imaging, vol. 27, no. 03, p. 1, May 2018.

[26] O. Green, “Efficient scalable median filtering using histogram-

based operations,” IEEE Trans. Image Process., vol. 27, no. 5, pp.

2217–2228, 2017.

[27] F. Bozkurt, M. Yaganoglu, and F. B. Günay, “Effective Gaussian

Blurring Process on Graphics Processing Unit with CUDA,” Int.
J. Mach. Learn. Comput., vol. 5, no. 1, p. 57, 2015.

[28] P. S. Battiato, “High Performance Median Filtering Algorithm

Based on NVIDIA GPU Computing,” in International

Symposium for Young Scientists in Technology, Engineering and

Mathematics, 2016, pp. 1–10.

[29] W. Ling, Nonlinear digital filters: analysis and applications.

Academic Press, 2010.
[30] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision

with the OpenCV library. “ O’Reilly Media, Inc.,” 2008.

[31] S. Uzun and D. Akgün, “An Accelerated Method for Determining

the Weights of Quadratic Image Filters,” IEEE Access, vol. 6, pp.

33718–33726, 2018.

[32] J. Cheng, M. Grossman, and T. KcKercher, Professional CUDA

C programming. Wrox, 2014.

