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 Image processing applications usually requires nonlinear methods due to the nonlinear 
characteristics of images. Quadratic image filter which is a class of nonlinear image filters are 

widely used in practice such as noise elimination edge detection and image enhancement. On the 

other hand, second order products of the pixels make quadratic image filters computationally 

expensive to implement when compared to linear convolution. In the last decade, CUDA 
accelerated computing has been widely used in image processing applications to reduce 

computation times. In this study, an efficient method for the CUDA acceleration of the quadratic 

image filter has been implemented. For this purpose, alternative algorithms were examined 

comparatively since the performance of the GPU is sensitive to memory utilization. Because 
quadratic filter has a large number of coefficients and quadratic terms, the algorithm which utilizes 

the shared memory for storing image blocks provided the best throughput among the examined 

methods. Comparative results that were obtained using various images in different sizes show 

significant accelerations over sequential implementation. 
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1. Introduction 

Image processing applications such as noise filtering, edge 

detection, and image enhancement are usually implemented 

using convolution or correlation operations. Convolution 

based image filtering involves moving a filtering kernel over 

the whole image to compute the pixels of output image. Each 

pixel is computed by multiplying the selected window of 

pixels from the input image with a filtering kernel. Then the 

multiplication results are summed and the resulting value is 

written to target pixel. [1]. Due the nonlinear structure of 

image contents, performance of linear filters may not be 

satisfactory in some applications. In such cases, nonlinear 

filters can be preferred over linear filters [2]. Theoretically, 

Volterra series approach is usually used to model nonlinear 

systems using infinite elements. In practice, Volterra model 

of a nonlinear system is defined by truncating it to a 

reasonable size. Usually, the preferred approach is to 

truncate it to include up to second order terms to reduce 

computational complexity and these filters are usually  called 

as Quadratic Image Filter (QIF)  [3]. QIFs are utilized in 

various research fields such as Gaussian noise or impulsive 

noise removal due to its edge preserving features [4]–[6]. 

QIFs are successful in edge detection applications [7], [8], 

medical image processing applications such as enhancement 

or noise reduction for mammogram images [9]–[15]. QIFs 

are utilized for feature extraction to use in face recognition 

applications [16]–[18]. QIFs requires to compute second 

order multiplications for computing a filtered pixel [19]–

[21]. Hence, required computations considerably larger than 

a convolutional filter of the same window size. For example, 

a QIF application using 33 window requires additional 45 

number of multiplications for obtaining all possible second 

degree of multiplications of the input pixels. Also, another 

45 number of multiplications for window weights are 

required. On the other hand linear convolution only requires 

9 number of multiplications with windows weights. Recent 

GPU (Graphics Processing Unit) products provides a good 

mean to accelerate computation of image processing 

applications. For this purpose, NVIDIA provides CUDA 

(Compute Unified Device Architecture) model to utilize 

http://www.dergipark.org.tr/ijamec
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https://doi.org/10.18100/ijamec.652564
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0002-0770-599X
https://orcid.org/0000-0001-8246-6733


Akgun and Uzun, International Journal of Applied Mathematics, Electronics and Computers 8(1): 001-006, 2020 

- 2 - 

 

GPU efficiently. CUDA enables writing programs for high 

performance parallel applications. Various image processing 

algorithms that can be parallelized utilizes the GPU 

technology for acceleration [22]–[28]. Since pixel the 

operations of QIF are independent, the algorithm can be 

parallelized to run on GPU environment. 

The focus of the present study is to develop an efficient 

algorithm based on CUDA for the GPU accelerated 

computing of QIFs. Sequential implementation of the QIFs 

usually require long execution durations when running times 

are investigated on an average desktop processor. Hence, an 

efficient CUDA based implementation may help utilization 

of QIFs practical. GPU acceleration is highly dependent on 

the programming approach and the utilization of GPU 

memory. Efficient approaches usually requires more 

complicated algorithm designs and programming 

approaches. Hence, three alternative implementations from 

simple to complex were discussed for comparison. As will 

be shown by experimental results the proposed method 

provides significant reductions in computation time when 

compared to sequential execution. Organization of the paper 

is as follows; in the second section background information 

for QIFs was given. In the third section, implementation of 

the alternative algorithms using CUDA kernels were 

explained in detail. In the fourth section, experimental 

execution times using sequential implementation and CUDA 

implementations were presented. Finally conclusions about 

the method and the results were given.  

2. Background 

QIFs, which are in the subclass of Volterra filters are the 

important alternatives of the linear filters[3], [29]. Eq-1 

describes the output equation of the QIF.  In this study, only 

the terms up to second degree were used and the constant 

term is excluded; 

𝑜(𝑚, 𝑛) = 𝑜1(𝑚, 𝑛) + 𝑜2(𝑚, 𝑛) (1) 

In above equation, m and n show the pixel coordinates to 

be filtered and o(m,n) shows the filtered output pixel. The 

linear component of the output is represented by o1(m,n) and 

the quadratic part is represented by o2(m,n). Eq-2 shows the 

expressions for the outputs o1(m,n) and o2(m,n).  

𝑜1(𝑚, 𝑛) = ∑ ∑ 𝑤𝑖,𝑗
1𝑀

𝑗=−𝑀 𝑥𝑚+𝑖,𝑛+𝑗
𝑀
𝑖=−𝑀

𝑜2(𝑚, 𝑛) = ∑ ∑ ∑ ∑𝑀𝑙=−𝑀
𝑀
𝑘=−𝑀

𝑀
𝑗=−𝑀

𝑀
𝑖=−𝑀

𝑤𝑖,𝑗,𝑘,𝑙
2 𝑥𝑚+𝑖,𝑛+𝑗𝑥𝑘+𝑖,𝑙+𝑗

}   (2) 

Where M means that a window size of (2M+1)(2M+1) is 

used for filtering. xm+i,n+j represents a pixel taken from the 

input image, w1
i,j and w2

i,j,k,l represents first order and second 

order filter weights respectively. The equations for linear and 

quadratic components can be expressed simpler. For this 

purpose, linear part of the expression can be redefined using 

one dimensional summation as given by Eq-3. 

𝑜1(𝑚, 𝑛) = ∑ 𝑊1(𝑖)𝑋𝑚,𝑛
1 (𝑖)

𝑁×𝑁−1

𝑖=0

 (3) 

Where N is equal to 2M+1. W1 describes weights, Xm,n is 

the selected window of pixels as given by Eq-4.  

𝑊1 = [𝑤0
1  𝑤1

1  𝑤2
1  …  𝑤𝑁𝑥𝑁−1

1 ]

𝑋𝑚,𝑛
1 = [𝑥0 𝑥1 𝑥2…  𝑥𝑁𝑥𝑁−1]

}  (4) 

For further simplification, above expression can be written 

as a dot product as below; 

𝑜1(𝑚, 𝑛) = 𝑊1𝑋𝑚,𝑛
1 𝑇

   (5) 

Similar to above arrangements, the quadratic component 

can be simplified. Initially it is useful to redefine it in two 

dimensional form as below; 

𝑜2(𝑚, 𝑛) = ∑ ∑ 𝑤𝑖,𝑗
2 𝑋𝑚,𝑛

1 (𝑖)𝑋𝑚,𝑛
1 (𝑗) 𝑁×𝑁

j=0
𝑁×𝑁
i=0   (6) 

Most of the multiplications of input pixels in Eq-6 is 

symmetric. This is shown by Eq-7 where the quadratic input 

terms forms a matrix of (N×N)×(N×N) size.  

𝑋𝑚,𝑛
1 𝑋𝑚,𝑛

1 𝑇
=

[

𝑥0𝑥0 𝑥0𝑥1 … 𝑥0𝑥𝑁×𝑁−1
𝑥1𝑥0 𝑥1𝑥1 … 𝑥1𝑥𝑁×𝑁−1
⋮ ⋮ ⋮ ⋮

𝑥𝑁×𝑁−1𝑥0 𝑥𝑁×𝑁−1𝑥1 … 𝑥𝑁×𝑁−1𝑥𝑁×𝑁−1

]  

  

(7) 

In order to eliminate symmetric terms in Eq-6, the initial 

value of the j is set to i as shown by Eq-8;  

𝑜2(𝑚, 𝑛) = ∑ ∑ 𝑤𝑖,𝑗
2 𝑋𝑚,𝑛

1 (𝑖)𝑋𝑚,𝑛
1 (j) 𝑁×𝑁

j=i
𝑁×𝑁
i=0   (8) 

The second order products of input given by Eq-8 do not 

contain symmetric multiplications. Therefore, the unique 

multiplications can be rewritten in vector form; 

𝑋𝑚,𝑛
2 = [𝑥0𝑥0  𝑥0𝑥1  ⋯  𝑥𝑁𝑥𝑁−1𝑥𝑁𝑥𝑁−1]  (9) 

Also the corresponding weights used in Eq-8 can be 

written in vector form as below,  

𝑊2 = [𝑤0
2  𝑤1

2  𝑤2
2  …  𝑤𝐵

2]  (10) 

Therefore, the quadratic part of the Eq-1 can be expressed 

as a dot product as below; 

𝑜2(𝑚, 𝑛) = 𝑊2𝑋𝑚,𝑛
2 𝑇

 (11) 

The number of elements in W2 and X2
m,n depends on the 

size of the filter kernel. The number of terms in quadratic 

vector excluding the symmetric terms for N×N size of kernel 

can be calculated by Eq-12; 

𝐵 = 𝑁 × 𝑁(1 + 𝑁 × 𝑁)/2 (12) 

The sum of linear and quadratic part gives the total 

equation to filter a pixel as shown by Eq-13.  

𝑜(𝑚, 𝑛) = 𝑊1𝑋𝑚,𝑛
1 𝑇

+𝑊2𝑋𝑚,𝑛
2 𝑇

 (13) 
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3. Proposed implementation 

In the present study, three alternative method for the 

CUDA implementation of the QIF were investigated. Before 

addressing the most efficient method described in this study, 

the two alternative approaches were also discussed for 

comparison. First method which is the most straightforward 

implementation shown by Algorithm 1. 

 
Every CUDA thread executes the kernel given by 

Algorithm 1 and filters a pixel selected according to the 

block and thread number. As explained in the previous 

section, once GPU initialized the data that kernel uses 

transferred to global memory. Before filtering function is 

executed, the neighborhood of selected pixel from the global 

memory is copied to global memory to reduce repeated reads 

from the global memory. Then, kernel filters a pixel selected 

according to pixelId variable using quadraticFilter() 

function. In a simpler implementation, this operation can 

also be discarded image data can be used directly. But due to 

the computation of quadratic terms, it is obvious that 

repeated reads of image data from global memory will 

decrease the performance. Filter functions normalizes the 

input pixels to 0-1 interval. After linear and quadratic 

components are computed, it is normalized back to 0-255 

interval and it is written to back to pixel location in global 

memory area where the output image is defined. 

 
Algorithm 2 shows the kernel implementation using 

Method 2 where block shared memory is utilized to improve 

the throughput. In addition to input pixels, each threads uses 

weights from global memory during filtering. On the other 

hand copying weights to thread local memory is not useful, 

since each thread reads weights one time and therefore this 

doesn’t change the number of global memory reads. In this 

case block shared memory were used to reduce the number 

of global memory reads. Prior to filtering operation, the 

weights are copied to block shared memory by each thread 

as shown by the line 11 of Algorithm 2. Therefore the 

number of global memory accesses is reduced to the number 

of blocks. Similar to Algorithm 1, this method is also uses 

thread local memory for storing the neighborhood of pixel to 

be filtered. Once all weights are copied to shared memory, 

all threads in the same block read the weights from block 

shared memory. However, Method 2 requires 

synchronization of threads in a block to ensure copy 

operation completed before filtering starts. Above methods 

store an input pixel and its neighborhood in the local thread 

memory to reduce the memory reads from global memory. 

However, each thread reads neighborhood of a pixel to be 

filtered repeatedly. It is desired that once a pixel is read from 

global memory, it doesn’t required to be read repeatedly. For 

this purpose an approach that use block shared memory for 

storing pixels of a block size is used. Method 3 is based on 

partitioning the input image into sub-blocks and storing 

every block in the block shared memory. Therefore repetitive 

accesses to global memory is eliminated. Although the pixels 

at the edges of blocks are read two times from the global 

memory, the other pixels are read one time from the global 

memory. After each of the sub-images are carried to block 

shared memories, no access to global memory is required to 

implement filtering. 

 
Method 1 requires reading a mask size of pixels and the 

filter weights from global memory for filtering a pixel. In 

Method 2, the weights are copied to block shared memory 

for each block and therefore reading the weights from the 

global memory is reduced to the number of blocks. Method 

3 also reduces the necessity of reading the neighbor of each 

pixel for filtering by carrying the sub-part of image to shared 

memory. The number of sub-blocks is determined by the 

number of threads in a block as shown by Eq16. In this 
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equation splitSize shows the width and height of a block, 

borderLines is the number of additional lines on all sides of 

a sub-block. In the present study, the number of threads in a 

block is set to 256 and therefore image is split into sub-

images of the size of 16×16. Since, sub-image in a block also 

contains the border lines, the sub-image size to be filtered in 

a 16×16 block is 14×14 for a 3×3 filtering mask. Threads in 

border lines were used for copying the image. Once 

subImageSize variable is determined in Eq. 16, blockCols 

and blockRows which are the number of columns and the 

number of rows respectively can be determined. 

                                                                                                                            
𝑏𝑙𝑜𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ = 16                                                                             
𝑏𝑜𝑟𝑑𝑒𝑟𝐿𝑖𝑛𝑒𝑠 = 1                                                                                
𝑠𝑢𝑏𝐼𝑚𝑔𝑆𝑖𝑧𝑒 =  𝑏𝑙𝑜𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ −  2 × 𝑏𝑜𝑟𝑑𝑒𝑟𝐿𝑖𝑛𝑒𝑠 = 14    
𝑡ℎ𝑟𝑒𝑎𝑑𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 = 𝑏𝑙𝑜𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ ×  𝑏𝑙𝑜𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ = 256

𝑏𝑙𝑜𝑐𝑘𝐶𝑜𝑙𝑠 = (𝑛𝐶𝑜𝑙𝑠 + 𝑠𝑢𝑏𝐼𝑚𝑔𝑆𝑖𝑧𝑒 − 1) / 𝑠𝑢𝑏𝐼𝑚𝑔𝑆𝑖𝑧𝑒     
𝑏𝑙𝑜𝑐𝑘𝑅𝑜𝑤𝑠 = (𝑛𝑅𝑜𝑤𝑠 + 𝑠𝑢𝑏𝐼𝑚𝑔𝑆𝑖𝑧𝑒 − 1) / 𝑠𝑢𝑏𝐼𝑚𝑔𝑆𝑖𝑧𝑒 

𝑛𝑢𝑚𝑂𝑓𝐵𝑙𝑜𝑐𝑘𝑠 = 𝑏𝑙𝑜𝑐𝑘𝐶𝑜𝑙𝑠 × 𝑏𝑙𝑜𝑐𝑘𝑅𝑜𝑤𝑠                               }
 
 
 

 
 
 

 (14) 

After the parameters defined by Eq. 16 are set, the kernel 

shown by Algorithm 3 is called to filter image. Before 

filtering starts, block shared arrays are allocated for weights 

and sub-image and then weights are copied to block shared 

memory as in Method 2. After block coordinates and thread 

coordinates and the corresponding filter coordinates are 

determined, a sub-image of block size is copied to block 

shared memory. Each pixel is copied by a thread and all 

threads are synchronized to ensure that all pixels in a sub-

block are copied before filtering starts. Both transferring 

filter weights and a block of input image to shared block 

memory reduce the global memory accesses significantly. 

4. Experimental Results 

Experimental results were obtained by measuring running 

durations of sequential implementations on CPU and parallel 

implementation on GPU using the described approaches in 

the previous section. Sequential execution durations were 

obtained using a computer that has Intel(R) Core(TM) i7-

4710MQ CPU@2.50GHz processor. CUDA based 

execution durations were also obtained on the same 

computer which has NVIDIA GeForce GTX 960M video 

card. The algorithms were written using VC++ Visual Studio 

2015™ environment. Color test images used in the 

performance measurements were read using OpenCV 

library[30]. Before processing, image data is normalized to 

0-1 interval and stored in float data type for both CPU and 

GPU implementations. The weights of the quadratic filter 

were determined by optimization approach using training 

and test images [31]. An example filtering result for QIF 

using the example weights were given in Figure 1 which also 

contains original image, noisy image and other filtering 

results using Gaussian filter, Average filter and Median filter 

for comparison.  

Table 1 shows the experimental measurements for 

execution durations repeated 8 times for the realized 

methods using a test image 1024×768 and 3×3 filter mask 

size. GPU execution times for the first run is relatively slow 

when compared to the rest of the results. In GPU computing 

this is usually called as warm-up run and discarded in 

performance measurements [32].  Additional kernel launches 

can be used to remove warm-up overheads. Because the size 

of the image has significant effect on the computation 

durations, the performance results were obtained for various 

sizes of images. 

 

Table 1. Example running times (milliseconds) for CPU, GPU 
naïve and GPU SMM for 1024×768 image and 3×3 filter mask 

 

CPU 

Method 1 Method 2 Method 3 

kernel + 

init. 
kernel 

kernel + 

init. 
kernel 

kernel + 

init. 
kernel 

86.47 679.7 5.630 692.5 5.264 665.1 1.172 

87.13 9.294 5.680 8.613 5.254 4.185 1.182 

85.19 8.825 5.623 8.430 5.262 3.852 1.175 

82.98 9.177 5.594 8.729 5.299 4.033 1.184 

83.99 9.681 5.592 8.795 5.268 4.028 1.198 

83.79 9.177 5.632 8.524 5.265 4.430 1.207 

83.04 8.902 5.611 8.927 5.268 4.207 1.192 

86.32 9.039 5.633 8.974 5.278 4.452 1.216 

 

 

Figure 1. Example filtering results using a synthetic reference 
image 

Table 2. Running durations (milliseconds) for CPU and GPU 
implementations  

Image size 
 

CPU 

Method 1 Method 2 Method 3 

kernel + 

init. 
kernel 

kernel + 

init. 
kernel 

kernel + 

init. 
kernel 

640×480 18.89 2.967 1.265 2.631 1.121 1.406 0.296 

800×600 50.25 6.898 3.447 6.130 3.212 2.707 0.736 

1024×768 88.41 9.849 5.650 9.074 5.259 4.120 1.190 

1280×720 103.8 11.06 6.718 10.39 6.391 4.586 1.395 

1440×900 137.0 15.04 9.487 13.95 9.030 5.982 1.941 

1920×1080 220.6 22.43 15.11 20.85 14.52 8.595 2.949 

2560×1440 391.3 37.18 26.10 34.66 24.67 14.45 5.306 

3840×2160 938.7 83.33 64.08 81.10 62.32 30.14 11.81 

 

Table 2 shows average computation times for 30 runs 

using all approaches and various sizes of images ranging 
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from 640×480 to 3840×2160. According to results, both 

kernel and kernel+initialization durations are considerably 

shorter than the sequential execution durations. While 

Method 1 and Method 2 provide close computation 

durations, the best acceleration was obtained by using 

Method 3. Kernel times where the filtering take place are 

even smaller than the total time which includes initialization 

times. Method 2 produced always smaller computation times 

than compared Method 1. This is because, the weights are 

read from block shared memory in Method 2 while weights 

are read from global memory in Method 1. Because weights 

are used one time by each thread for filtering, this doesn’t 

provide significant acceleration like Method 3 where a block 

of image transferred to block shared memory. All threads 

uses the image data stored in shared memory. This 

significantly reduces the number of accesses to global 

memory and because each thread reads only a pixel from 

global memory to store to shared memory. On the other 

hand, the pixels at the edges are shared with blocks and they 

are read two times by neighbor blocks. 

5. Conclusion 

Quadratic filters are computationally expensive to 

implement due to the computation of all possible second 

degree multiplications. In addition, these terms are 

multiplied with weights and linear component is also 

computed for determining an output pixel. According to 

experimental evaluations, sequential implementation 

produces long execution times resulting as the image size is 

increased. In the present study, a GPU based method for the 

acceleration of the quadratic filter was introduced. For this 

purpose three alternative implementations from simple to 

complex were discussed. The first method simply reads a 

frame of pixels from global memory to thread local memory 

and reads weights from global memory and apply quadratic 

filtering to produce filtered pixel. Method 2 reads filter 

weights global memory and keep them in shared memory for 

the threads within the block. Therefore threads in a block 

reads weights from shared memory instead of global 

memory. Because each of the weights are read one time, this 

doesn’t provide much improvement over Method 1. Method 

3 requires the image be separated into a number of blocks 

determined by a thread block size. Within each block, a 

number pixels that is equal to the size of a block is filtered 

by the threads of that block. The image to be filtered is 

transferred to shared memory of each block to obtain better 

performance results. Although Method 3 increases the 

complexity of code it provides better management of 

memory for reducing access times, and therefore produces 

better results than the simpler implementations. The results 

show that, Method 3 considerably reduces the running 

duration of QIF when compared to CPU and other 

implementations with GPU. In the future studies, 

performance can further be improved using alternative 

algorithmic and programming approaches.  
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