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Abstract: In this research study, vibration of an elastic cantilever beam is suppressed with norm based controllers by using the piezoelectric 

actuator. Beam like distributed parameter structures have theoretically infinite number of vibration modes and uncontrolled high frequency 

vibration modes in a control application may be excited by the controller due to spillover effect.  In this paper, 
2H , H

 and mixed norm 

objective 
2 /H H

 controllers are designed by introducing a multiplicative uncertainty which represents unmodeled high-frequency 

dynamics in the control system. The designed controllers are realized in experiments and performances of the controllers are compared 

using frequency and time domain responses. 

 

Keywords: Robust control, elastic beam vibrations, active vibrations control, piezoelectric actuator 

 

1. Introduction 

Many research works have been carried out especially in aerospace 

structures to create active and semi-active control systems by 

embedding piezoelectric materials into structures. Such structures 

are called smart or adaptive structures, and control applications are 

important for these systems [1-6]. Piezoelectric materials have 

important characteristics to create smart structures [7]. When an 

electric field is applied to a piezoelectric material, it is deformed 

therefore it is suitable to use as an actuator in control systems. 

Furthermore, the piezoelectric material generates voltage when it 

is deformed and it can be used as a sensor to detect deformations.  

Distributed parameter structures with piezoelectric layers may 

have great potentials to create adaptive structures for responding 

on changing external conditions.  

Robustness of a structural control system may sometimes be an 

issue due to the disturbance effect of high order structural modes 

[8]. Modal behaviors of distributed parameter systems such as 

beams, shafts, plates should be considered especially in control 

design applications. In these systems, there are theoretically 

infinite number of modal frequencies and in practical control 

applications the uncontrolled modes may be excited by the 

controller.  This phenomenon is called spillover effect and may be 

danger if any measures is not taken.  

 

Norm based linear control approaches have been studied in the 

control of engineering systems in recent years due to some distinct 

advantages [9-10]. In general, different control specifications 

should be satisfied in a control system. Considering norm based 

controllers, while H
 control mainly enforces the robust stability, 

2H  control improves the transient behavior of the control system. 

The multi-objective 
2 /H H

control combines both design 

objectives. It is an advantage that both  

 

frequency and time domain specifications are performed in 

vibration control of the distributed parameter systems.  

This paper begins with the modeling of the cantilever beam for 

control design. Also, a modal analysis is realized and natural 

frequencies of the beam are obtained using different methods. 

Norm based controller designs are presented and the controller and 

closed loop frequency responses are shown for each control case 

in simulations. The experimental setup is introduced in detail. The 

experimental results are presented in frequency and time domain 

for each control. Finally, the control performances are compared 

using frequency responses. 

2. Modeling of the cantilever beam 

The cantilever beam with an attached piezoelectric actuator is 

schematically shown in Figure 1(a). Here x  coordinate is related 

with the longitudinal dynamics and y  coordinate shows the 

direction of vibration of the beam. The force that piezoelectric 

patch generated is shown by f and applied to the beam at the 

distance fx . The distance sx denotes the sensor location. For each 

vibration mode, the separated equation of motion is given by 

2( ) 2 ( ) ( ) ( ) ( )n n n n n n fx t x t x t f t x    
                                  (1) 

where n  is the mode natural frequency,   is the damping 

coefficient and ( )n   is the mode shape function. The state space 

equation for each modal behavior is obtained using equation (1) as 

follows 

( ) ( ) ( )n nx t A x t B u t                                                   (2) 

where ( )x t  is the state vector, 
nA  is the system matrix, 

nB  is the 

control input matrix and ( )u t  is the control input. The structure of 

the state vector and matrices are as follows 
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                  (3) 

In distributed systems, the displacement measured by the sensor is 

modeled as the multiplication of the modal displacement with the 

mode shape function at the considered point. For the sensor 

location, the output is written as 

1

( )( , ) )(n n s

n

ty x t x x




                                                                 (4) 

Using equation (4) for each vibration mode the output of the state 

space equation is obtained as 

 ( )   0 ( )n n ny C C x ttx                                                         (5) 

where the matrix 
nC  is computed using the following mode shape 

function. 

( ) sinh sin

sinh sin
(cosh cos )

cosh cos

n n s n s n s

n b n b
n s n s

n b n b

C x x x

L L
x x

L L

  

 
 

 

  
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  
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                               (6) 

where 
1/2

2 1 1
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n n n
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e
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                                       (7) 
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Fig. 1. Beam structure for modeling (a) cantilever beam  (b) PZT layout 

 

 

 

 

 

 

 

Table .1 Parameters of the cantilever beam and PZT patch 

Symbol Meaning Value Unit 

bL  Length of the beam 0.35  m 

bb  Width of the beam 0.040  m 

bh  Thickness of the beam 0.001  m 

b   Density of the beam 2780 kg/m3 

bE   Young’s modulus of the beam 70 GPa 

pL  Length of the PZT patch 0.050 m 

pb  Width of the PZT patch 0.030 m 

ph  Thickness of the PZT patch 0.0005 m 

31d  Piezoelectric charge constant 101.8 10    C/N 

p  Density of the PZT patch 7800 kg/m3 

pE  Young’s modulus of the PZT patch 6.2 GPA 

fx   Location of the PZT 0.080 m 

 

The bending moment generated by the PZT patch attached on the 

beam shown schematically in Figure 1(b) is defined as  

31p p p mM e V b z                                                                           (8) 

 

where pV  is the applied voltage, mz  is the distance from the half 

thickness of the beam to the half thickness of the PZT. In addition, 

pb   shows the width of the PZT and 31e  shows the PZT patch 

constant. The force applied by PZT actuator given in equation (1) 

is derived as follows.  

 
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                 (9) 

If the modeling is extended for n modes, the state space structure 

is obtained as follows. 

 
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               (10)  

The mode shapes of the cantilever beam with normalized 

dimensions and modal displacements are obtained as shown in 

Figure 2. The locations of the displacement sensor and PZT patch 

are depicted in the figure to understand whether the nodal points 

occur at these points. As seen in Figure 2, the nodal points are 

different locations from the sensor and PZT locations for the first 

four vibration modes.  

             Distributed systems have theoretically infinite number of vibration 

modes. The state space model obtained in equation (10) considers 

certain number of modes. In this study, the full order model of the 

cantilever beam is built by considering the vibration modes up to 

1 kHz. In practice the modal contributions of the higher order 

modes are inconsiderable due to small modal amplitudes. Also, the 

reduced order model which contains the first two modes up to 40 

Hz are used for controller designs. The frequency responses of the 

full and reduced order models are shown in Figure 3. 
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             Natural frequencies of the cantilever beam at each vibration modes 

are obtained using different approaches and the frequency values 

are given in Table 2. The state space model used for control designs 

is derived using the analytical model as given above. In the 

analytical model, PZT patch is not considered in the modeling. 

Modal frequencies obtained in experiments are different from the 

analytical model results due to the PZT patch attached on the beam 

surface. The FEM model results clearly verify the PZT patch 

effect.  

 
Fig. 2. Mode shapes of the cantilever beam 

 
Fig. 3. Frequency response of the beam model 

Table.2 Natural frequencies of the beam vibration modes 

Mode 

Number 

Analytical 

Model [Hz] 

FEM Model (ANSYS) 

[Hz] 

Experimental 

results [Hz] 

without 

PZT 

without 

PZT 

with 

PZT 

with PZT 

1 6.67 6.78 6.60 5.50 

2 41.84 41.51 38.20 33.00 

3 117.15 114.67 96.61 98.50 

4 229.57 233.91 212.00 212.50 

3.   Norm Based Control Designs 

3.1.  H  Control  

In distributed parameter control systems such as beams, rotors and 

plates, unmodeled high frequency dynamics may be excited by the 

designed controller. This phenomenon is called spillover effect and 

it should be considered in the controller design. Since H  control 

theory essentially considers such unstructured uncertainties in the 

control design it is very suitable for this type of control structures 

to avoid spillover.   

The H control design structure is shown in Figure 4. In this block 

representation ( )rP s  and ( )K s  show the reduced order system 

model and the controller to be designed, respectively. Also, ( )G s  

is the generalized or augmented system. The design filters 
1( )W s  

and 
2 ( )W s  are used for the robust performance and the robust 

stability of the closed loop system.   and   are scalar weights for 

the system disturbance and sensor noise and are taken as 

1,  0.01   . The transfer matrix from the system disturbance 

d  and sensor noise n  to the controlled outputs 
1z  and 

2z  is 

obtained as 

 

1 11

2 22

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

r

a

zw

W s P s S s W s T sz d

W s T s W s T sz n

z G s w

 

 

    
     

    



                          (11) 

Here, ( )zwG s  includes all transfer functions from w  to z .  The 

transfer functions are given as  1( ) ( )( ( ) ( )) ( )r rT s K s I P s K s P s 

1( ) ( ( ) ( ))rS s I P s K s   , and 1( ) ( )( ( ) ( ))a rT s K s I P s K s   . The 

H control design objective is to obtain a controller that minimize 

infinity norm of the closed loop transfer matrix such as [11] 

 ( )zwG s 

                                                                  (12) 

where 0  . The control system performance strongly depends on 

the frequency shaping filters. The filters 
1( )W s  and 

2 ( )W s are 

selected as 

2 2

1 1 2 2 2 2

1

2
,    

2
  nm nm nm

dm dm dm

s
W p W p

s s

   

   

 
   

  
                           (13) 

The robust stability filter 
2 ( )W s  is determined by using neglected 

high frequency dynamics. For this aim, while the filter nominator 

frequency 
nm  is taken as the controlled last vibration mode 

frequency or the second mode frequency, the denominator 

frequency 
dm  is selected as the first unmodeled frequency or the 

third vibration mode frequency. The multiplicative uncertainty 

( )m j  in the system is obtained as 

( ) ( )
( )

( )

f r

m

r

P j P j
j

P j

 





                                                    (14) 

where ( )fP j  shows the full order system model. The robust 

stability filter 
2 ( )W s  essentially covers the unstructured 

uncertainties existing in the system such as   

m 2( ) ( )       j W j                                                          (15) 

Frequency responses of the multiplicative uncertainty and robust 

stability filter are shown in Figure 5.  Using the augmented system 

model obtained using the control design structure the H
 

controller is computed as  

   

K K K K

K K K

x A x B y

u C x D y

   

  

 

 
                                                               (16) 

The frequency response of the H∞ controller is shown in Figure 6. 

Using the designed H∞ controller, the closed loop system of the full 

order system is obtained and the frequency response is presented 

in Figure 7. The targeted first and second modes are suppressed 
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perfectly while the other uncontrolled modes are not excited by the 

controller.  

                               
                  (a)    

              
                                                    (b) 

Fig. 4. H  control design structure (a) Generalized plant (b) block 

structure 

 

 
Fig. 5. Frequency response of multiplicative uncertainty and 1W  and 2W   

filters 

 
Fig. 6. Frequency response of the H∞ controller 

 

Fig. 7. Close loop frequency response with H∞ controller 

 

3.2. 
2H  Control 

Control design specifications in a control system such as noise 

attenuation or regulation against random disturbances are more 

essentially handled in 
2H  or LQG control. The time response and 

transient behavior of the feedback control system can be improved 

with 
2H  control. In 

2H  control, the input v  is a white noise 

disturbance with unit covariance. 

 

The 2H  control design block structure is shown in Figure 8. In this 

control block, 3W  and 4W  are the system disturbance spectrum and 

sensor noise spectrum respectively. The design filters 
1( )W s  and 

2 ( )W s  are the same with the H  control design.  

 

1 3 1 41 1

2 3 2 42 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

a a

zv

W s S s W W s T s Wz v

W s T s W W s T s Wz v

z T s v

    
     

    



                           (17) 

( )zvT s  shows the transfer matrix from v  to z .  The control design 

objective is to minimize 2H  norm of the closed loop transfer 

matrix such as  

    
2

( )zvT s                                                                                      (18) 

where 0  . The 
2H  controller is computed as  

   
2 2 2 2

2 2 2   

K K K K

K K K

x A x B y

u C x D y

 

 
                                                             (19) 

 

The 
2H  controller frequency response is illustrated in Figure 9. 

The closed loop frequency response of the system with 
2H  

controller is shown in Figure 10. The first and second vibration 

modes are suppressed and the other modes are not effected 

anymore.  
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Fig. 8. Block diagram of H2 control design 

 

 
Fig. 9. Frequency response of H2 controller 

 

Fig. 10.  Close loop frequency responce with 
2H   controller 

 

3.3. Mixed 
2H /H

Control 

All design specifications in a control system are not captured by an 

H
 or 

2H  controller. While H
 control mainly enforces the 

closed-loop stability, 
2H  control improves the transient behavior 

of the control system.  A multi-objective control that combines 

both design objectives is highly desirable in practice.  

The generalized plant structure of the multi-objective control is 

shown in Figure 11. The output channel z   is associated with the 

H
 performance while the channel 

2z   is associated with the 
2H  

performance. Also, ( )T s
 and 

2 ( )T s  are the closed-loop transfer 

functions from w   to z  and  
2z , respectively. The state-space 

realization of the plant is given by 

 

1 2

1 2

2 2 21 22

1y y

x Ax B w B u

z C x D w D u

z C x D w D u

y C x D w

   

  

  
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 

                                                           (20) 

Using the closed loop transfer functions, minimization of a trade-

off criterion can be formed such that design a controller K(s) that 

minimizes the mixed 
2 /H H

 norm criterion 

 
2 2

2 2
( ) ( )      , 0   T s T s    

                                  (21) 

subject to 

 

0 2 0 0 02
( ) ,   ( ) ,         , 0T s T s    

                      (22) 

 

The mixed 
2 /H H

controller is obtained as follows 

2 2 2 2

2 2 2   

K K K K

K K K

x A x B y

u C x D y

   

  

 

 
                                                   (23) 

The frequency response of the 
2 /H H

 controller is given in 

Figure 12. The closed loop control system frequency response with 

the mixed 
2 /H H

controller is depicted in Figure 13.   

 

Fig. 11. Multi-objective control structure 

 
Fig. 12. Frequency response of 

2 /H H
 controller 
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Fig. 13. Close loop frequency response with 

2 /H H
controller 

4. Experimental System 

The photo of the experimental system setup is shown in Figure 14. 

An elastic ( ) =350 40 1   mmp p pL b h     dimension aluminum 

beam with attached PZT actuator is fixed at one end using a clamp. 

In the experimental system, a PI DuraAct (P-876.A12) PZT patch 

with 61 35 0.5   mm    dimension  is installed. Supply voltage for 

the PZT patch is between 100  400   V. Power supplies, optic 

sensor, driver(E-413.D2) for piezoelectric actuator and Quanser-

Q8 unit are used as peripheral devices. Vibration analysis of the 

beam is performed with a Bruel&Kjaer 3053 device. The designed 

controllers are realized using dSpace 1104 control card. The 

controllers are discretized and compiled in the state space form 

using a Matlab/Simulink file and installed on dSpace control card. 

 

 

Fig. 14. Experimental system 

4.1. Experimental Results 

The closed loop frequency responses of the beam obtained in 

experiments with H
,  

2H  and 
2 /H H

 controllers are shown in 

Figure 15, respectively. Since the first two modes of the cantilever 

beam are targeted in control design, these modes are suppressed by 

the controllers in different levels. In these results, the uncontrolled 

modes are not excited by the controllers. The time history 

responses of the beam displacements at sensor location are shown 

in Figure 16 for designed controllers. The time response of the 

control system with 
2H  control is comparatively better than the 

other controllers. The time history responses of the control inputs 

for every control are shown in Figure 17. The largest control input 

especially at the initial state is produced by H
 control. This result 

reflects the H
 control characteristics.  The amplitude of the 

control input produced by the 
2 /H H

 control is almost half of the 

other controller inputs (Figure 17(c)). The frequency responses of 

the closed loop system with norm based controllers are compared 

in Figure 18.  

 

 
(a) H   control 

 
(b) 2H  control 

 

 

 
(c) 2 /H H  control 

Fig. 15. Experimental closed loop frequency response   
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      (a) H  control                                                   

 
                   (b) 2H  control 

 
(c) 2 /H H  control 

Fig. 16. Time history responses  of the displacements 

 

 
                               (a) H   control                                                   

 
 

                 (b) 2H  control 

 
(c) 2 /H H  control 

Fig. 17. Time history responses  of the control inputs 

 

        
Fig. 18. Comparison of the experimental closed loop frequency 

responses. 
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4.2 Robustness test 

 

Since norm based control design approaches consider uncertainty 

in the control system design, a robustness test can be realized 

experimentally. To understand the robustness of the designed 

controllers, a tip mass having %10 percent of the total mass is 

attached to the cantilever beam. For every designed controller, the 

closed loop time history responses of the displacements with tip 

mass are shown in Fig. 19 and Fig.20. Also, the control input 

voltages are given in Fig.21. Although some increase in the 

magnitude of the displacement is observed, the controllers 

suppress the vibration of the beam effectively.  

 
 

 

                                                     (a) 2H  control 

 

        (b) H   control         

 
                                                (c) 2 /H H   control                                   

 
Fig. 19. Time history responses  of the displacements with tip mass 

 
 

 

 

 

                                                    (a) 2H  control 
 

 
                   (b) H   control        

 

                                                (c) 2 /H H   control                                   

  
Fig. 20. Comparison time history responses  of the displacements with tip 

mass 

 

 
Fig. 21. Comparison time history responses  of the control inputs 

 

5. Conclusion 

Vibration suppression of the flexible cantilever beam with a 

piezoelectric actuator is investigated using norm based 
2H , H

 

and 
2 /H H

 controllers.  Neglected or unmodeled high-frequency 
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dynamics in the beam control system are covered with robust 

stability filters in the control design to avoid the spillover effect. 

The experiments are realized for every control to understand the 

robustness and performance improvements in the control system. 

The frequency responses and time history responses are presented 

for each control case. The targeted vibration modes are suppressed 

by the proposed controllers in different levels.  
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