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Abstract: In this paper, a graphical stabilization approach is proposed and analyzed for a class of unstable first order linear systems with 

time delay. We first show that the control designs based on time invariant models are unable to guarantee stability and asymptotic 

tracking for unstable first order linear systems in general case. So, the condition stability is analysed graphically by computing the first 

derivative and plotting the graph of a function with precision; the first derivative allows us to determine the critical points and several 

conditions of stability. Therefore, it’s important to note that the method can guarantee the existence of a proportional gain to ensure the 

stability of the closed-loop system such that the time delay is small relatively to the time constant. Finally, a numerical example 

illustrates the efficiency and performances of the proposed approach.   
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1. Introduction 

The time delay phenomena were first appeared in biological 

phenomena and were later found in many engineering systems, 

such as mechanical transmissions, fluid transmissions, and 

networked control systems. They are considered as a source of 

instability and poor control performance. The main time-domain 

methods are the Lyapunov-Krasovskii functional and Razumikhin 

function methods [1, 2]. They are the most common approaches 

to the stability analysis of time-delay systems. Since it was very 

difficult to construct Lyapunov-Krasovskii functional and 

Lyapunov functions until 1990, the stability criteria obtained 

were generally in the form of existence conditions and do not 

have a general solution. For example, a new Lyapunov-

Krasovskii functional is introduced to take into account that a 

nominal delay may be different from zero. Also, as it has been 

shown in [3, 4, 5, 6] and references therein, there exist systems 

that are unstable in the case free of delays and becomes stable 

only for some strictly positive values of the delay. In [7], the 

observer based approach is considered for stabilization and 

control of unstable first-order plants with known parameters. An 

alternative way to prove the stability of time-delay systems using 

Taylor series and the quadratic separation formalism is exposed 

in [8]. Another is concerned with the stability analysis for 

uncertain systems with interval time-varying delays based on the 

division of the time delay range [9].  

This paper addresses this problem of proving the stability of a 

linear time-delay system for a given delay assuming the system to 

be unstable for zero delay. The main contribution of this paper is 

to consider a class of continuous first linear unstable processes 

with known parameters subject to time delays. As preliminary 

result, the standard case of system restricted to a smaller time 

delay than unstable time constant system is proved graphically by 

computing the first derivative and plots the graph of a function, 

the first derivative allows us to determine the critical points and 

several conditions of stability. 

The remainder of this paper is organized as follows. We present 

the considered class of systems together with a recall of 

conditions stability lemmas in Section 2, which is followed by 

Walton and Marshall Method in Section 3. In Section 4, a 

truncation based methods is addressed. A graphical stabilization 

approach is presented in Section 5. A numerical example and 

simulations are presented in Section 6. Finally, concluding and 

remarks are given in Section 7. 

2. Preliminaries Results 

Let us consider the class of single input single output linear 

systems with time delay: 
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where 0a and 0b the parameters system, 0 is the 

time delay, G(s) is the delay free transfer function, U(s) and Y(s) 

are the input and output signals respectively.  

In the following subsections, the existence conditions stability of 

closed-loop system is stated. Consider a proportional output 

feedback, as represented in Fig. 1, then, there exists a gain K such 

that the closed-loop system is stable. 
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Lemma 1. Consider the delayed system (1) and the control 

scheme shown in Fig. 1, there exists a proportional gain k such 

that the closed-loop system (2) is stable if and only if the time 
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delay is small relatively to the time constant [7], it 

means 1a . 

 

Fig. 1.  Closed-loop system 

3. Walton and Marshall Method 

We recall a stability criterion for time delay systems with a single 

delay, which is due to Walton and Marshall in 1987. Time delay 

systems with a single delay have a characteristic equation of the 

following form: 
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where )(sN and )(sD are polynomials with real coefficients, 

such that degree ))()(( sNsD  and verifying: 
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The polynomial equation is given by, 

 

0)()()()()( 2  jwDjwDjwNjwNw     (5) 

 

The solution of characteristic equation is, 
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3.1. Procedure 

The Walton-Marshall stability criterion consists in the following 

steps, as outlined below: 

 Analyzing stability in the case free of delay, i.e. 

when 0  

 Increasing the time delay  from zero to a strictly 

positive 0 , and evaluating how do the eigen-values 

move with increasing   

 Eliminating the exponentials to obtain a real polynomial 

)( 2w  

 Interesting to positive real solutions of the polynomial 

equation 0)( 2 w  

 Noting that if )( 2w has no positive real roots, then 

there is no change in stability: if the system is stable 

(unstable) in the case free of delays 0 , then the 

system is stable (unstable) for all delay values 0  

 If this is not the case, we determine the positive 

roots of 0)( 2 w , and by using the characteristic 

equation: 0)()(   jwejwDjwN , the time delay 

 satisfies, if 
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3.2. Example application 

Consider the characteristic equation of the closed-loop system 

(2), given by, 
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where a , b and   are positives. 

If 0 , then 0 bkas , Stability for, abk   

For 0 ,  

2222 )()( bkaww                          (9) 

0)( 222  bkaw                                (10) 

 
222 )( abkwi                                        (11) 

For positive roots, abk  , implies an asymptotic stability, if 

and only if, 1a . But for negative roots, abk 0 , there 

is no change in stability (unstable) in the case free of 

delays 0 .  

The solution of characteristic equation is, 
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Or,  
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Finally, the asymptotical stability, if and only if, 10  a  

4. Truncation based methods  

The first order Pade approximation is given by, 
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We replace in the characteristic equation of the closed-loop 

system (2), given by (8), we obtain: 
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Dressing the Routh-table, we obtained, 
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Table 1. Routh-table 
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The number of roots of the polynomial that are in the right half 

plane is equal to the number of sign changes in the first column 

of Routh-array. And we show that all coefficients being positive 

are necessary for all roots to be located in the left half plane, 
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Since there is no sign change, the polynomial (16), has two poles 

in the left half plane. 

5. Graphical Stabilization Approach 

By computing the first derivative, it is a possible to plot the graph 

of a function with precision; the first derivative represents the 

slope of a function and allows us to determine its rate of change, 

the stationary and critical points allow us to obtain local minima, 

maxima and several conditions of stability. 

5.1. Methodology 

 Calculate the first derivative 

 Find all stationary and critical points  

 Create a table of variation by identifying the function at 
the stationary and critical points  

 Whether the function is increasing or decreasing 
between the stationary and critical points 

 Use the table to plot the graph 

 Condition of asymptotic stability is given by the sign 
stationary point 

5.2. Example application 

Recall to (8), of the closed-loop system (2), given by, 
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We denote by f , the corresponding function, 
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And we plot the graph of the function after calculating the first 

derivative of )(sf , 
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We obtain a stationary point when 0),(' sf , 
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Create a table of variations by identifying the value of the 

function at the stationary point   /),( 1

0
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Table 2. Table variations 
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There is thus one stationary point 0s  and no critical point since 

the derivative is well defined for all s . And we note that the 

value of 0s can take any value positive (blue curve) or negative 

(green curve) as mentioned in Fig. 2.  

For the blue curve, the condition of asymptotic stability is given 

by, 

 

1),,( 0  asfbka                     (25) 

 

But for the green curve, there is no change in stability (unstable), 

  

0,0  abk                         (26) 

 

In conclusion, we make the following condition, concerning the 

influence of the time delay in the stability analysis: 

1),,( 0  asfbka   and there is no change in 

stability (unstable) for: 0,0  abk .  

Finally, the result obtained by the proposed approach, is well 

justified and confirm the Walton-Marshall method. 

 

Table 3. Example values for stability condition 

ax         and    )(/1 xfabk   

x  )(xf  

0.1 4.0657 

0.2 2.2466 
0.3 1.6553 

0.4 1.3720 

0.5 1.2131 
0.6 1.1172 

0.7 1.0583 

0.8 1.0234 
0.9 1.0054 

1.0 1.0000 
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Fig. 2.  Graph function 

6. Simulations and Results 

     Let us consider a first order transfer function plus a dead time 

of plant model, which is given by, 

se
as

b
sG 


)(  

where 0a and 0b the parameters system, 0 is the 

time delay. 

Figure 3 shows the step response of open-loop system with 

10  where 1b and 05.0a . Also, we can clearly see in 

Figures 4, 5 and 6, the step response of closed-loop system with 

different values of 1a . Furthermore, it can be seen from 

comparison in Figure 7, for a small change of the parameter gain 

k restricted to )( 0sfbka  and 5.0a . Figure 8 

present a step response of closed-loop system when there is a 

small change in parameters system where 1b and 05.0a . 
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Fig. 3.  Step response of open-loop system 
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Fig. 4.  Step response of cloused-loop system: 5.0a and 20.1k  
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Fig. 5.  Step response of cloused-loop system: 1.0a and 2k  
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Fig. 6.  Step response of closed-loop system: 8.0a  and 02.1k  
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Fig. 7.  Comparing step response of closed-loop system with 5.0a   
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Fig. 8.  Comparing step response of closed-loop system with 1.0a   

7. Conclusion 

The analysis stability based on graphical stabilization approach is 

presented and analyzed for a class of unstable first order linear 

systems with time delay. Asymptotic stability is assured 

graphically by computing the first derivative and provided that 

the proportional gain such that the closed-loop system is stable if 

and only if the time delay is small relatively to the time constant. 

A numerical example for a first-order transfer function plus a 

dead time process has been studied and it has been showed by 

simulations that there exists a suitable choice of proportional 

gains k such that the output signal converged to set point of the 

closed-loop system when 1a , and the system is unstable in 

the case free of delays 0 , and becomes stable only for some 

strictly positive values of the delay. 

Finally, the main advantage of the proposed approach is not only 

their simplicity, but also that it justifies and confirms the results 

obtained with Walton-Marshall method. 
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