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Abstract: The design of the system used for brushless DC (BLDC) motor control in speed and position control is difficult due to the non-

linear structure. Therefore, the designed controller is required to respond to these challenges and need high-efficiency operation. This 

paper presents the experimental validation of a robust speed control structure of a BLDC motor based on continuous sliding mode (CSM) 

and fractional-order sliding mode (FOSM) controllers. The controllers have been tested for low and medium speed reference signals and 

amplitude values. Then, both controllers have been compared in term of tracking performance and error elimination and the results have 

been shown graphically. Experimental results prove that the FOSM controller shows better trajectory tracking performance than CSM 

controller with high precision as well as good robustness against changes of references. 
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1. Introduction 

Parallel to the developments in the control areas, brushless DC 

motors are used in computers, automated office equipment, 

robotic applications, electro-mechanical systems and many 

precision machines. Brushless DC motors can be controlled more 

simply than other direct current motors and it has advantages 

such as high torque, high efficiency and small size. In addition, 

problems such as mechanical wear occur in the brushes and 

commutator by changing the position of the stator and rotor in the 

DC motor. And also maintenance of the brush takes a long time. 

But instead of brushes and commutator, BLDC motors use Hall 

Effect sensors [1]. Today, drivers have developed high processing 

ability and therefore robust control of BLDC motors are 

successfully carried out. The desired control algorithm is 

mathematically analysed for robust operation of the controller 

designed in accordance with, are tested in various computer 

programs and R & D work done. In the literature, various studies 

have been made for speed control of BLDC motors. In [2], is 

described a fuzzy logic approach for BLDC motor controller in 

variable speeds and the fuzzy logic tuner is used to adjust the 

gains of the PI controller and the results obtained in the 

simulation study showed less ripple under variation in system 

parameters with fast response times. Yu and Hwang have 

proposed an optimal PID controller and controller parameters are 

determined by linear quadratic regulator. The successes of the 

proposed method were compared with conventional PID 

controller and simulation and experimental results were given. 

Navidi et al. [4] proposed a method determined by ant colony 

search algorithm for PID controller parameters. They have 

demonstrated success with the simulation results of the proposed 

method in improving the step response characteristics such as 

reducing the steady-states error, settling and rise time, and 

maximum overshoot in speed control. Chen and Tang proposed a 

sliding mode current control scheme for pulse width modulation 

(PWM) brushless dc motor drives in their study [5]. In this 

scheme, an improved “equivalent control” method is used and 

they stated that the validity of this scheme is achieved by 

simulation and experimental results. Moshiri et al. proposed an 

approach that has the merit to determine the optimal structure and 

the inference rules of fuzzy sliding mode controller 

simultaneously [6]. The success of the proposed controller is 

provided with the simulation results. Wang et al. offered a stable 

hierarchical sliding-mode control method for a class of second-

order under actuated systems [7]. They consider the system as 

two subsystems and defined a first-level sliding surface for each 

part. Also they defined a second-level sliding surface for these 

two first-level sliding surfaces and simulation results have shown 

the success of the proposed method and adaptive abilities for all 

kinds of extraneous disturbances. 

The main advantages of sliding mode control are demonstrated in 

numerous examples and simulations. The history of this control 

structure; In 1977, after V. Utkin [8] compiler work, Sliding 

Mode Controller - SMC and Variable Structure Control - VSC 

methods are widely used in control applications until today [9]-

[19]. The aim of sliding mode control methods, especially in the 

real dynamic system; are designed to drive the system states onto 

a particular surface in the state space, named sliding surface. 

Once the sliding surface is reached, sliding mode control keeps 

the states on the close neighbourhood of the sliding surface. 

There are two main advantages of sliding mode control. First is 

that the dynamic behaviour of the system may be tailored by the 

particular choice of the sliding function. Secondly, the closed 

loop response becomes totally insensitive to some particular 

uncertainties. The disadvantage of sliding mode control method is 

a control signal that changes direction too much and it is called 

chattering. Also chattering causes some problems in practice such 

as damaging the component parts of the fast moving systems, to 

causes fatigue in the controlled system, significantly reduce the 

life of the system and to cause unnecessary energy consumption. 

Various methods are available to reduce this negative effect of 

chattering such as filtering, discontinuous approach, saturation 

function and fuzzy control. But this time the robustness of the 
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sliding mode control functionality is lost [12-14]. 

In this study, a fractional order sliding mode controller is 

designed to reduce the effect of chattering and also to maintain 

the high robustness and high accuracy features sliding mode 

control. 

  

2. BLDC Motor Model  

The electrical and mechanical mathematical equation of BLDC 

motor can be expressed as, 
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where ‘𝑛’ is the gearbox reduction ratio, ‘𝐵𝑚’is frictional 

coefficient of motor and load, ‘𝐽𝑚’ is the motor inertia, ‘𝐽2 ’ is the 

gearbox inertia, ‘𝐹𝑐’ is Coulomb torque constant, ‘𝑓𝑎(𝜑)’, ‘𝑓𝑏(𝜑)’ 

, ‘𝑓𝑐(𝜑)’  are functions having same shapes as back emfs, ‘𝜆’ is 

represent the total flux linkage as the product of number of turns 

and flux linkage/conductor, ‘𝜔𝑚’ is the angular speed of the 

motor, ‘𝜑𝑚’ is mechanical angle of rotor, ‘𝜑𝑒’ is electrical angle 

of rotor, ‘𝑝’ is number of pole on rotor, 𝐿1= L – M, L is the self-

inductance of the winding per phase, M is the mutual inductance 

per phase. 𝑇𝐿𝑜𝑎𝑑is written in the (6) and it can be rearranged in 

the following form for each motor; 
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BLDC motor state equations are written in the following form; 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)          (9) 

𝑦(𝑡) = 𝐶𝑥(𝑡)         (10) 

 

where the states and input vector are chosen as; 
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the system matrices are given below, 
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𝐶 = [0 0 0 1 0 ]         (15) 

 

3. Control 

In this section, the mathematical equations of designed controller 

and its block diagram is given.  

 

3.1. Continuous Sliding Mode Controller 

 

The goal is to drive states of the system given (9),(10) in the set 

Sdefined by; 

 

S = {x: τ(t) − ξ(x) = ε(x, t) = 0}        (16) 

 

where τ(t)is the time dependent part of the sliding function, 

containing reference inputs to be applied to the controller. 

ξ(x)denotes the state dependent part of the sliding 

function, ε(x, t). The derivation of the control involves the 

selection of a Lyapunov function V(ε)  and a desired form of 

derivative of the Lyapunov function such that closed-loop system 

is stable. The selected Lyapunov function is [20-22] 

 

𝑉 =
1

2
𝜀𝑇𝜀    (17) 

which is positive definite, and its derivative is 

 

V̇ = εTε̇           (18) 

 

The solution ε(x, t) = 0 will be stable if time derivative of the 

Lyapunov function can be expressed as [22] 

 

V̇ = −εTDε         (19) 

 

where D is a positive definite matrix. Thus, the derivative of the 

Lyapunov function will be negative definite and this will ensure 

the stability. Eq. (18) and (19) lead to 

 

εT(Dε + ε̇) = 0           (20) 

 

A solution for this equation is 

 

Dε + ε̇ = 0         (21) 

 

The expression for derivative of the sliding function is 
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d

dt
ε =

d

dt
τ −

d

dt
ξ         (22) 

where, 

 

ξ = Gx(t)         (23) 

 

G ∈ ℜnxm is gain matrices, and 

 

ξ̇ = 𝐺ẋ(t)         (24) 

 

First, equivalent control is found by ε̇ = 0 and using (22) as 

 

ε̇ = τ̇ − ξ̇ =   τ̇ − (𝐺𝐴𝑥(𝑡) + 𝐺𝐵𝑢𝑒𝑞) = 0      (25) 

 

𝑢𝑒𝑞 = (𝐺𝐵)
−1(τ̇ − 𝐺𝐴𝑥(𝑡))       (26) 

 

Second, using (23) the control input to the system can be found 

by following: 

 

ε̇ = −Dε = τ̇ − ξ̇          (27) 

 

τ̇ − (𝐺𝐴𝑥(𝑡) + 𝐺𝐵𝑢𝑒𝑞) = −Dε       (28) 

 

and the result of the short algebra can be written as 

 

𝑢 = 𝑢𝑒𝑞 + (𝐺𝐵)
−1Dε         (29) 

 

Third, from time derivative of the sliding function 

 

ε̇ = τ̇ − (𝐺𝐴𝑥(𝑡) + 𝐺𝐵𝑢)        (30) 

 

multiplying both sides with(𝐺𝐵)−1 

 

(𝐺𝐵)−1ε̇ = (𝐺𝐵)−1(τ̇ − (𝐺𝐴𝑥(𝑡)) − 𝑢      (31) 

 

and by using (25) 

 

(𝐺𝐵)−1ε̇ = 𝑢𝑒𝑞 − 𝑢         (32) 

 

and finally when this equation is substituted in (29) the control is 

found as 

 

𝑢(𝑡) = 𝑢(𝑡−) + (𝐺𝐵)−1(ε̇ + Dε)       (33) 

 

𝑡 = 𝑡− + ∆ ,   ∆→ 0  

 

The value of the control at the instant 𝑡 is calculated from the 

value at the time𝑡− + ∆ and the weighed sum of the control error 

ε and its time derivative. Control (33) is continuous function 

everywhere except in the points of discontinuity of the function 

𝜀(𝑥, 𝑡). When these equations are adapted for BLDC motor 

control system shown in Fig. 1, the following equation can be 

written for the control loop as 

 

𝑢𝑣(𝑡) = 𝑢𝑣(𝑡
−) + (𝐺𝐵)−1(εv̇ + Dεv)        (34) 

 

Figure 1. Continuous sliding mode controller block diagram 

3.2. Continuous Sliding Mode Controller 

The fractional-order differentiator can be denoted by a general 

fundamental operator 𝐷𝑎 𝑡
𝑝

 , where 𝑎 and𝑡 are the limits of 

operations. The fractional-order differentiator and integral are 

defined as follows, 

 

𝐷𝑎 𝑡
𝑝
= 

{
 
 

 
 
𝑑𝑝

𝑑𝑡𝑟
              ∶ 𝑝 > 0
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𝑡

𝑎
  ∶ 𝑝 < 0

          (35) 

 

where 𝑝 is the fractional order which can be a complex number, 

however the constant 𝑝is related to initial conditions. There are 

several mathematical definitions to describe the fractional 

derivatives and integrals [23], [24]. Between these definitions, 

here are two commonly used ones, i.e., the Grünwald–Letnikov 

(GL) and the Riemann–Liouville (RL). The GL definition is; 

 

Da t
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h
]
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j
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where [.] means the integer part, while the RL definition is given 

as, 
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for (𝑛 − 1 < 𝑝 < 𝑛), 𝛤(. )is the Euler’s gamma function, 𝑎is the 

initial time and 𝑡 parameter is used when the differential and 

integral are taken. 

 

3.3. Fractional-Order Sliding Mode Controller 

In (34), if the derivative term expressed as a fractional order, 

 

𝑢𝑣(𝑡) = 𝑢𝑣(𝑡
−) + (𝐺𝐵)−1( 𝐷𝑎 𝑡

𝑝
𝜀v +𝐷𝜀v)       (38) 

 

When these equations are adapted for BLDC motor control 

system shown in Fig. 2 

 

 

Figure 2. Fractional sliding mode controller block diagram 

4. Experimental Result 

 

The performance of the both controllers are evaluated for the 

tracking capability of the references and the ability to reduce the 

error and rise time. Sinus and trapezoidal speed references are 

implemented to BLDC motor for performance comparison of 

both controllers and the experimental results are shown in Figs. 

3-10. 

In the first experiment, 10 rpm sinusoidal speed reference is 

chosen for testing CSM and FOSM controllers. As shown in Fig. 

3 and Fig. 6, the FOSM controller has fast rise time at the 

reference input in comparison with CSM controller. Although 

both controller have similar reference tracking capabilities and it 

is seen that the CSM controller is less sensitive to follow the 

reference. The maximum percentage errors of sine wave 

reference for CSM is 10.13% and for FOSM 4.17 % respectively. 
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The results for sinusoidal speed reference at 1000 rpm are given 

in Fig. 4 and Fig. 7.  Due to chosen a reference signal which is 

slowly changing over time the tracking errors are close to each 

other.  However, FOSM gives 0.4 sec rise time while CSM is 0.6 

sec which is obviously much better.  

In the second experiment, trapezoidal wave speed reference at 10 

rpm is given for control of BLDC motor. The trapezoidal wave 

reference is important to test the performance of the controllers 

for sudden changes. It can be seen from Fig. 5 and Fig. 8 that, 

CSM gives 0.6 sec rise time while CSM is 0.5 sec.  

 

 

Figure 3. Continuous sliding mode 10 rpm sinus ref. 

 

Figure 4. Continuous sliding mode 1000 rpm sinus ref. 

 

Figure 5. Continuous sliding mode 10 rpm trapezoidal ref. 

On the other hand, FOSM have better performance than CSM 

when the trapezoidal wave reference sudden changes. The 

trapezoidal speed reference at 1000 rpm in Fig. 9 and Fig. 10 also 

shows the success of the FOSM. Both controllers have similar 

reference tracking capabilities and have similar rise time at the 

starting point of trapezoidal wave. CSM was failed to show 

adequate performance at the moments of suddenly changes. 

FOSM has been more successful than CSM at the any sudden 

change after the start. 

 

 

 

Figure 6. Fractional-order sliding mode 10 rpm sinus ref. 

 

Figure 7. Fractional-order sliding mode 1000 rpm sinus ref. 

 

Figure 8. Fractional-order sliding mode 10 rpm trapezoidal ref. 
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Figure 9. Continuous sliding mode 1000 rpm trapezoidal ref. 

5. Conclusions 

In this paper, an experimental study on the application of CSM 

and FOSM controllers to a BLDC motor under the different speed 

references was presented. The experimental results show that the 

FOSM controller shows better steady state performance with 

better rise time, smaller speed error and having less overshoot 

when it compared to the responses of CSM. To conclude, the 

applied FOSM controller results in better responses than CSM 

controller to control the speed of the BLDC motor under 

changing references.  
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